Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты биологическая ценность

    Использование гидролизатов овальбумина и кератина в присутствии гидролизата сои позволяет таким же образом получить пластеины сои, обогащенные метионином и цистеином. Коэффициент эффективности белка (КЭБ) увеличивается с 1,20 для соевого белка до 3,38 для смеси одной части обогащенного пластеина сои и двух частей исходного соевого белка. Для сравнения укажем, что КЭБ для казеина равен 2,40. Без введения аминокислот биологическая ценность белка и пластеина сои остается неизменной (67%). [c.618]


    Изучена возможность использования жиросодержащих отходов мясоперерабатывающих предприятий в качестве источника углерода для выращивания дрожжевой биомассы - сырья для получения незаменимых аминокислот и кормовых добавок. Показано, что предварительный t идролиз жиров позволяет понизить темперагуру выращивания дрожжей и вести процесс при 25 С - в более мягком технологическом режиме. Анализ аминокислотного состава дрожжевого белка свидетельствует о высокой биологической ценности полученного продукта. [c.206]

    Максимальная температура при упаривании барды ие должна превышать 142°С, так как иначе происходит распад сахаров и аминокислот (меланоидиновая реакция), а также разрушение витаминов, что резко снижает биологическую ценность барды. [c.387]

    Для птиц незаменимой аминокислотой является глицин. У жвачных животных биосинтез всех НАК производится микроорганизмами кишечного тракта, при зтом необходимы в достаточном количестве соединения азота (аммонийные соли, мочевина). Для человека обеспечение организма НАК — важнейшая задача питания. Высокую биологическую ценность имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат НАК не только в достаточном количестве, но и в необходимом для человека соотношении. Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). Важными компонентами смешанного корма являются рыбная и соевая мука. В белке соевой муки и в белке кормовых дрожжей мало метионина, в кукурузе — лизина и триптофана. Дефицит может компенсироваться добавлением недостающей аминокислоты илн подходящей комбинацией других белков. [c.19]

    Аминокислотный состав белка (выраженный в граммах на 16 г азота) сравнивается с аминокислотным составом стандартного белка, за который принимают белок целого яйца, незаменимые аминокислоты его, как доказано этими авторами, полностью доступны и обеспечивают оптимальный рост крыс. Подсчитывается процентная доля каждой незаменимой аминокислоты изучаемого белка по отношению к соответствуюш,ему содержанию в стандартном белке. Наименьшая доля из всех принимается в качестве химического показателя. Этот показатель зависит только от содержания лимитирующей незаменимой кислоты и не учитывает ни наличия аминокислот, ни возможного их избытка по сравнению с потребностью, что может объяснить его слабую корреляцию с биологической ценностью белка, измеренной при кормлении животных [25]. [c.574]


    С понятием биологической ценности белков тесно связан вопрос об эссенциальных (незаменимых) аминокислотах. Живые организмы существенно различаются в зависимости от их способности синтезировать амино- [c.413]

    Потребность человека в белке зависит от его возраста, пола, характера трудовой деятельности. В организме здорового взрослого человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие азотного баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т. е. количество азота, полученного с белками пищи, равно количеству выделяемого азота. В молодом растущем организме идет накопление белковой массы, образуется ряд нужных для организма соединений, поэтому азотный баланс будет положительным — количество поступающего азота с пищей превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях, недостатке в рационе питания белков, незаменимых аминокислот, витаминов, минеральных веществ наблюдается отрицательный азотный баланс — количество выделенного из организма азота превышает его поступление в организм. Длительный отрицательный азотный баланс ведет к гибели организма. На белковый обмен влияют биологическая ценность и количество поступающего с пищей белка. [c.18]

    Биологическая ценность белков может быть увеличена добавлением лимитирующей аминокислоты или внесением компонента с ее повышенным содержанием. Так, биологическая ценность белка пшеницы может быть повышена приблизительно в два раза добавлением 0,3—0,4 % лизина, белка кукурузы — 0,4 % лизина и 0,7 % триптофана. [c.19]

    Общим для всех колбас является денатурация белков и Разрушение части витаминов. Однако в большинстве случаев денатурация белков не сопровождается заметным снижением биологической ценности. Во всяком случае лимитирования заменимых аминокислот не наблюдается, т. е. биологическая нность не уменьшается. [c.169]

    Жидкий концентрат лизина (ЖКЛ) хорошо сохраняется в течение 3-4 мес. Считается, что он обладает большей биологической ценностью, чем сухой ККЛ. Для получения сухого концентрата (ККЛ) жидкий концентрат высушивают на распылительных сушилках до влажности 5-6%. Такой концентрат (ККЛ) содержит до 15-20% лизина в виде монохлоргидрата, около 15-17% белка, до 14% других аминокислот, 10-13% бетаина и около 20-25% зольных веществ. Но сухой концентрат (ККЛ), получаемый высушиванием стабилизированной и сконцентрированной культуральной жидкости, имеет недостаток, он очень гигроскопичен (его гигроскопическая точка при 20°С равна 20-22% относительной влажности воздуха) и при хранении слеживается крупными комками, которые затрудняют его дальнейшее продуктивное использование и при приготовлении комбикормов, и непосредственно на животноводческих фермах. Есть несколько способов ликвидации этого недостатка. По-видимому, большая гигроскопичность сухого препарата связана с высоким содержанием сахаров и органических кислот. Их процентное [c.38]

    Питательная ценность белка дрожжей определяется в первую очередь соотношением входящих в него аминокислот [74] и зависит от вида дрожжей, состава среды и способа выращивания [75]. Однако у отдельных видов дрожжей нет резких различий в содержании аминокислот [76], и это определяет высокую биологическую ценность дрожжевого белка [43, 77, 78]. Белки дрожжей усваиваются организмом на 85—88% по этому показателю они занимают промежуточное положение между белками растительного (65—75%) и животного (90—95%) происхождения [79, 80]. Благодаря высокому содержанию лизина и валина, дрожжи являются хорошим дополнением к белку злаков и улучшают их питательную ценность. Кроме того, дрожжи богаты витаминами группы В и другими ростовыми веществами [58, 81, 82]. [c.78]

    При современной технологии из 1 т абсолютно сухого растительного сырья (опилки, щепа, лузга из семечек и риса, кукурузная кочерыжка, отходы подсолнуха и др.) получают до 250 кг товарных белковых кормовых дрожжей. Это полноценная белковая добавка к кормам, которая повышает биологическую ценность других кормов за счет содержащихся белков, витаминов группы В и незаменимых аминокислот. [c.87]

    Любой синтетический метод должен исходить из доступных аминокислот. Последние используются также для повышения биологической ценности продуктов, бедных теми или иными аминокислотами. К счастью, многие аминокислоты можно получить из природных источников. Ниже приведены схемы промышленного получения лизина и метионина  [c.612]

    Различные белки отличаются друг от друга по своему аминокислотному составу. Биологическая ценность белка определяется наличием в нем достаточного количества жизненно необходимых аминокислот, т. е. таких аминокислот, которые не могут быть синтезированы в организме п должны обязательно поступать с пищей. К жизненно необходимым [c.208]


    Питательные свойства белков можно оценить с помощью двух характеристик-хил< ческой ценности и биологической ценности. В первом случае после полного гидролиза определяют аминокислотный состав белка и сравнивают его со стандартом-белком, полученным из молока и яиц. При этом определяют потенциальную химическую ценность белка. Мерой биологической ценности белка служит величина, обратно пропорциональная количеству данного белкового продукта, которое необходимо для поддержания азотистого баланса у взрослого человека или экспериментального животного, т. е. состояния, при котором количество поступающего в организм азота точно соответствует его количеству, выводимому с мочой и калом. Если в данном белке есть все незаменимые аминокислоты в необходимых пропорциях и все они могут всасываться в кишечнике, то биологическая ценность такого-белка условно принимается равной 100. Для полностью перевариваемых белков с неполным содержанием аминокислот или с полным содержанием аминокислот, но не полностью перевариваемых это значение будет заведомо ниже. В соответствии с этим критерием биологическая ценность белка, в котором отсутствует хотя бы одна незаменимая аминокислота, будет равна нулю. Если белок характеризуется низкой биологической ценностью, он должен присутствовать в пище в очень больших количествах, чтобы обеспечить потребности организма в незаменимой аминокислоте, содержание которой в таком белке минимально. Остальные аминокислоты будут поступать в организм при этом в количествах, превышающих его потребности. Лишние аминокислоты будут подвергаться в печени дезаминированию и превращаться в гликоген или жир либо просто сгорать в качестве топлива. [c.824]

    Больным с почечной недостаточностью нужен регулярный диализ для удаления из крови токсичных шлаков , главным образом мочевины и мочевой кислоты. Чтобы уменьшить зависимость больного от этой процедуры, следует свести к минимуму вьщеление азота. Это достигается с помощью диеты, которая сбалансирована по общему количеству аминокислот и по их относительному содержанию, т.е. пища должна состоять из белков с биологической ценностью, близкой к 100. Поскольку в яйцах содержатся все незаменимые а.минокислоты и биологическая ценность яиц выше, чем зерна, с питательной точки зрения яйца более сбалансированы, чем зерно, и служат лучшей пищей для больных. [c.1002]

    Белки важны для жизнедеятельности организмов. Биологическая ценность белка определяется сравнением суммарных -СВОЙСТВ данного белка с наиболее полноценными, хорошо усвояемыми белками — казеином молока и альбумином яйца. Ценность белка зависит от некоторых его свойств, степени его усвоения организмом и, конечно, от аминокислотного состава белка, главным образом от содержания в нем незаменимых аминокислот. Очевидно, что при малом количестве какой-либо из этих аминокислот белка требуется больше для удовлетворения потребностей организма, по сравнению с теми белками, в которых много незаменимых аминокислот. [c.356]

    Биологическая ценность того или иного белка будет тем выше, чем ближе его аминокислотный состав к составу белков данного организма. Белки, находящиеся в продуктах питания, потребляемых человеком, содержат в тех или иных количествах все аминокислоты, и никогда не бывает так, чтобы какая-либо аминокислота полностью отсутствовала. Степень усвоения белка, его биологическая ценность, определяется не только аминокислотным составом белка, но и возможностью расщепления белка ферментами пищеварительных соков. Такие белковые вещества, как волосы, шерсть, перья и т. п., не могут быть использованы в качестве пищевых продуктов именно потому, что они не изменяются под влиянием протеолитических ферментов пищеварительного тракта человека и большинства животных. [c.308]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста было выяснено в опытах на людях и некоторых животных. В этих опытах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты, и, в зависимости от того, тормозился при этом рост или совершался нормально, делали вывод о значении исследуемых аминокислот для роста. Так, было установлено, что жизненно необходимыми (незаменимыми) аминокислотами для роста крыс являются следующие 10 аминокислот валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин (рис. 40 и 41). Незаменимость указанных аминокислот для роста, видимо, связана с тем, что организм неспособен их синтезировать. Они должны быть введены извне вместе с пищей. Скорость синтеза аргинина, который может быть синтезирован в организме, невелика. Поэтому при отсутствии аргинина в пище рост не прекращается, но идет медленнее, чем при наличии аргинина. Отсутствие в пище остальных аминокислот (например, гликокола, аспарагиновой кислоты) не влияет на рост, так как организм способен их синтезировать. [c.308]

    Биологическая ценность того или иного белка будет тем выше, чем ближе его аминокислотный состав к составу белков данного организма. Белки, находящиеся в продуктах питания, потребляемых человеком, содержат в тех или иных количествах все аминокислоты, и никогда не бывает так, чтобы какая-либо аминокислота полностью отсутствовала. Степень усвоения белка, его биологическая ценность, определяется не только ами- [c.325]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста выяснено в наблюдениях на людях и некоторых животных. В этих работах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты [c.325]

    Давно уже установлено, что белки необходимы для питания животных и что некоторые из белков по сравнению с другими лучше поддерживают рост. В общем можно считать, что биологическая ценность белка определяется его аминокислотным составом. Этот вывод базируется на том, что введенные с пищей белки подвергаются в желудочно-кишечном тракте гидролизу на отдельные аминокислоты, которые затем всасываются из кишечника. Таким образом, используются не сами белки, а аминокислоты, входящие в состав белков и освобождаемые при их гидролизе. Хотя это представление можно считать в основном правильным, оно требует некоторых уточнений. Так, до сих пор не доказано, что все белки полностью подвергаются гидролизу в пищеварительном тракте не исключена возможность, что [c.119]

    При сравнении величин биологической ценности белков, определенных методом аминокислотного скора, практически во всех случаях наблюдается одна и та же последовательность в качественной оценке белков, причем каждый раз качество белков выявляется недостаточно, поскольку этот метод не учитывает степень доступности аминокислот, на что указывалось выше. [c.9]

    Четвертый уровень связан с количественными оценками моноструктур -ингредиентов биологической ценности продукта (незаменимых аминокислот, полиненасыщенных жирных кислот и др), т.е. составляющих компонентов элементов химического состава. Критерий в данном случае выражается суммой квадратов отклонений содержания моноструктурных элементов от их значений в некотором эталонном сбалансированном продукте (например, яи шни белок или грудное молоко)  [c.57]

    Как отмечалось ранее, питательная ценность белка зависит также от сбалансированности незаменимых аминокислот. Группа экспертов Продовольственной и сельскохозяйственной организации [20] предложила другой способ расчета химического показателя, учитывая участие каждой незаменимой аминокислоты в общей их совокупности. Стандартным белком, по отношению к которому производится расчет того же типа, могут служить целое куриное яйцо, женское молоко или введенный ФАО стандарт [20], основанный на потребности здорового человека. В этом случае показатель для лимитирующей аминокислоты (выраженной в процентах от суммы всех незаменимых аминокислот) определяется как отношение найденного в изучаемом белке значения к соответствующему значению для стандартного белка. Этот способ расчета несколько лучше, чем показатель Митчела и Блока, он согласуется с биологической ценностью белка, измеренной при кормлении животных. [c.574]

    Индекс Озэра четко коррелирует с биологической ценностью для крыс, свиней и собак, как это показал Митчел [43] на 48 пищевых белках. Однако он не учитывает степень и скорость высвобождения аминокислот в процессе переваривания белков в желудочно-кишечном тракте и поэтому имеет тенденцию к преувеличению экспериментальных значений, особенно в отношении продуктов, подвергшихся термообработке. Тем не менее этот способ полезен для прогнозирования (предварительной оценки) максимального питательного потенциала белка и целенаправленного пополнения рационов. [c.575]

    Основные химические изменения, которые происходят при этом, состоят в частичном разрушении нескольких аминокислот, таких, как цистеин, треонин, серии, изолейцин, лизин, с попутным снижением биологической ценности. Возможно появление необычных аминокислот в результате преобразования некоторых аминокислотных остатков (изолейцин и аргинин, дающие соответственно аллоизолейцин и орнитин), или как следствие конденсации между остатков одной и той же белковой цепи или двух цепей посредством межмолекулярных или внутримолекулярных ковалентных связей с образованием лантионина и особенно лизиналанина, возможная токсичность которого в настоящее время обсуждается [6]. В любом случае эти реакции образования сетчатой структуры еще больше снижают переваримость азотистой фракции. [c.589]

    При расчете индекса Озэра обычно преувеличивается биологическая ценность изолятов, что может указывать на снижение доступности некоторых незаменимых аминокислот, особенно серосодержащих аминокислот, под действием обработки (конские бобы Пролл с соавторами [55] люпин Элмадфа с соавторами [19]). Изомеризация, не выявляемая при анализе, вероятно, играет очень важную роль в снижении питательной ценности. [c.590]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    Биологическая ценность пищевого белка целиком зависит от степени его усвоения организмом, что в свою очередь определяется соответствием между аминокислотным составом потребляемого белка и аминокислотным составом белков организма. Такой пищевой белок лучше используется организмом для синтеза белков тканей. Для человека, например, белки мяса, молока, яиц биологически более ценны, поскольку их аминокислотный состав ближе к аминокислотному составу органов и тканей человека. Однако это не исключает приема растительных белков, в которых содержится необходимый набор аминокислот, но в другом соотношении. Поэтому для обеспечения биосинтеза необходимого количества эвдогенных белков человеку потребуется значительно больше растительных белков, чем животных. [c.416]

    Пищевая ценность сыров. Сыры — одни из немногих п вых продуктов с высокой пищевой ценностью (см. прил ния 52—55). Они являются белковыми продуктами, обла, щимИ высокой биологической ценностью практически у обнаруживается только небольшой недостаток серосодерж аминокислот (см. приложение 52). [c.162]

    Биологическая ценность белков. Значение пищевьгх белков для организма определяется главным образом двумя факторами 1) близостью аминокислотного состава пищевого белка к аминокислотному составу белков тела 2) содержанием в белках незаменимых аминокислот, которые животные и человек, в отличие от растений и микроорганизмов, не могут синтезировать. Из 20 аминокислот, входящих в состав белков, только 10 способны синтезироваться в организме — это заменимые аминокислоты, остальные 10 аминокислот являются незаменимыми (табл. 24.1), т. е. они должны поступать в организм с пищей. [c.360]

    Получение мясокостной муки из осадков стоков мясокомбинатов. Отходы мясокомбинатов, задержанные в специальных отстойниках (конфискаты, рога, копыта, щетина, обрезь со щкур, отходы кищек и пр.), богаты белками высокой биологической ценности в них содержатся важнейшие аминокислоты и значительное количество жиров. После промывки, сушки и размола из этих отходов получают мясокостную муку. Производственные отходы при переработке крупного рогатого скота составляют 5,5%, свиней —3,1% и мелкого рогатого скота — 15,4%. [c.182]

    Обращает на себя внимание низкая биологическая ценность белков кукурузы. М. И. Смирнова-Иконникова и Б. Г. Шнайдер указывают, что это объясняется малым количеством лизина в белках зерна кукурузы. По данным Р. Блока и Д. Боллинга, в целом зерне кукурузы содержание триптофана и лизина соответственно составляет 0,6 и 2,5% общего количества аминокислот в белках, а в белках зародыща зерна соответственно 1,3 и 5,8%. Зависимость биологической ценности белков кукурузы от содержания триптофана и лизина подтверждена рядом опытов. Дж. Шульц и В. Томас, проводя опыты с крысами, нашли, что биологическая ценность белков зародышей кукурузы составляла 64—72% (100% — биологическая ценность белков яйца), а белков эндосперма 44—59%, что соответствует различному количеству триптофана и лизина в этих белках. Содержание лизина и триптофана в отдельных белковых фракциях семян кукурузы неодинаково наименьшим количеством этих аминокислот отличается спирторастворимая фракция. При добавлении к кукурузной муке триптофана и лизина биологическая ценность белков корма значительно повышается. [c.357]

    Биологическая ценность белков зерна бобовых культур очень высокая, она значительно выще, чем биологическая ценность других растительных белков. Если принять биологическую ценность белков молока за 100, то биологическая ценность белков больщинства бобовых будет 75—85, а ценность белков сои приближается к 100. Некоторые исследователи считают, что белки молока и сои практически равноценны. По данным исследований В. Г. Клименко, М. И. Смирновой-Иконниковой и многих других авторов, в белках бобовых находятся все незаменимые аминокислоты и количество этих аминокислот почти соответствует их содержанию в продуктах животного происхождения. Таким образом, семена зернобобовых культур являются не только продуктом с больщим количеством белков, но и концентратом незаменимых аминокислот, необходимых для людей и животных. Благодаря легкой растворимости белков аминокислоты, входящие в их состав, легко доступны для усвоения организмом человека и животных. [c.388]

    Белок картофеля имеет высокую биологическую ценность, так как в нем довольно много незаменимых аминокислот. По данным Рейосига, в состав белков клубней картофеля входит следующее количество незаменимых аминокислот (граммов на 100 г белка) лизин — 6,3, метионин — 2,2, фенилаланин — 6,3, триптофан — 1,9, треонин — 5,3, валин—6, лейцин + изолейцин— [c.418]

    Необходимо остановиться на представлении о полноценности и неполноценности белков в питании. Для изучения свойств белков используются различные методы получения отдельных фракций белков из органов и тканей. Применяя фракционное осаждение, электрофорез и другие методы, из белкового комплекса, находящегося в тканях, выделяют отдельные фракции, например, глиадин (из белков пшеницы), или зеин (из белков кукурузы) и т. п. Эти фракции не содержат некоторых незаменимых аминокислот или содержат их в ничтожных количествах. Опыты с кормлением животных такими белками показали невозможность использовать их для поддержания азотистого равновесия, в связи с чем стали говорить о существовании неполноценных белков . Эти фракции белков действительно неполноценны как источники белкового питания. Однако ни человек, ни животные никогда не употребляют в пищу отдельные фракции белков, подобные зеину, эдестину и др., а едят пищевые продукты (кукурузу, пшеницу и т. п.). В природе не существует животных или растительных тканей, в которых полностью отсутствовали бы незаменимые аминокислоты. На основании аминокислотного состава суммарного белка данного пищевого продукта можно говорить лишь об его большей или меньшей биологической ценности (Б. И. Збарский). [c.310]

    На практике наибольшее распространение для определения биологической ценности белков получили так называемые методы аминокислотных шкал, основанные на использовании аминокислотного (химического) скора [4, 8], интегрированного аминокислотного показателя Кюнау — Осера — Митчела [13, 14, 17] и индекса Корпачи [12]. Два последних из-за большой сложности расчетов не нашли широкого применения и в настоящее время повсеместно используют аминокислотный скор, позволяющий выявить так называемые лимитирующие незаменимые аминокислоты. Определение лимитирующих аминокислот и степени их недостатка состоит в сравнении процентного содержания аминокислот в изучаемом белке и в таком же количестве условного идеального белка, т. е. белка, полностью удовлетворяющего потребности организма. Все аминокислоты, скор которых составляет менее 100%, считаются лимитирующими, а аминокислота с наименьшим скором является главной лимитирующей аминокислотой. [c.9]


Смотреть страницы где упоминается термин Аминокислоты биологическая ценность: [c.825]    [c.218]    [c.14]    [c.615]    [c.154]    [c.370]    [c.27]    [c.307]    [c.307]    [c.308]    [c.324]    [c.328]    [c.128]   
Химия и биология белков (1953) -- [ c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическая ценность



© 2025 chem21.info Реклама на сайте