Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия при растяжении каучука

Рис. 8. Изменения силы ], энтропии 5 и внутренней энергии Е при одноосном растяжении каучука при 20° С (по данным Антони с соавторами ) Рис. 8. <a href="/info/1267319">Изменения силы</a> ], энтропии 5 и <a href="/info/3615">внутренней энергии</a> Е при <a href="/info/197281">одноосном растяжении</a> каучука при 20° С (по данным Антони с соавторами )

    Это объясняется тем, что при растяжении металла увеличиваются средние расстояния между атомами и вследствие этого процесс сопровождается охлаждением (поглощением теплоты), а в результате растяжения каучука происходит в основном лишь распрямление цепей при сохранении средних расстояний поэтому объем и внутренняя энергия системы не изменяются. На растяжение каучука требуется затрата работы, расходуемой на распрямление цепей это сопровождается уменьшением энтропии тела, так как упорядоченность расположения цепей возрастает и выделяется соответствующее количество теплоты. [c.575]

    Энтропийный характер упругости идеального газа означает, что при уменьшении объема газа возрастает число ударов молекул о стенки — упругая сила связана с тепловым движением молекул. Сжатие газа уменьшает его энтропию, так как газ переходит из более вероятного разреженного состояния в менее вероятное — сжатое. Очевидно, что сходный процесс происходит и в каучуке, т. е. каучук состоит из большого числа независимо перемещающихся элементов, и растяжение каучука означает переход от более вероятного их расположения к менее вероятному, т. е. уменьшение энтропии. Только в этом и заключается смысл аналогии между каучуком и идеальным газом. [c.121]

    Объясняется такое явление тем, что при растяжении каучука происходит выпрямление свернутых макромолекул, и тем, что различные конформации, возникающие при этом, отличаются только значением энтропии, но не своей энергией. [c.375]

    Полимеры с гибкими макромолекулами, например каучук, способны обратимо деформироваться на несколько сотен процентов, и при этом объем полимера остается практически неизменным. Обычные кристаллические тела деформируются всего на несколько процентов, а объем их при растяжении увеличивается. При растяжении полимеров происходит упорядочивание их структуры, следовательно, уменьшение энтропии и выделение теплоты. [c.207]

Рис. 87. Изменение напряжения, внутренней энергии и энтропии каучука при растяжении Рис. 87. <a href="/info/148777">Изменение напряжения</a>, <a href="/info/3615">внутренней энергии</a> и <a href="/info/717495">энтропии каучука</a> при растяжении
    Соответствующая диаграмма имеет вид, представленный на рис. 4. Теперь растянем расплав, значение энтальпии Нам существенно не изменится, а значение энтропии 5ам уменьшится, так как деформированным клубкам отвечает меньшее число состояний, чем недеформированным. Тогда кривая 1 заменится на кривую Г, а точка перехода сдвинется в область более вы- Соких температур. Такой эффект (кристаллизация каучуков при растяжении) хорошо известен. [c.24]


    Энтропийная природа высокоэластичности каучука непосредственно следует из сказанного. В нерастянутом состоянии цепи свернуты в статистические клубки, чему соответствует максимальная энтропия. При растяжении клубка энтропия уменьшается. Энтропия цепи равна [c.128]

    Таким образом, мы считаем, что процесс растяжения и усадки вискозного шелка связан с ориентацией и дезориентацией цепей целлюлозы. В отличие от каучука, изменение свободной энергии системы происходит практически целиком за счет изменения энтропии [14], так как на целлюлозе не наблюдается явлений настоящей кристаллизации, связанных с изменением теплосодержания системы. Это подтверждается, например, тем, что плотности ориентированного и неориентированного шелка равны [4] изотермы сорбции паров воды ориентированным и дезориентированным шелком идут практически одинаково [15]. [c.27]

    Характерным свойством аморфных полимеров является их способность выдерживать большие напряжения или деформации. В сшитой системе, образующей трехмерную сетку, напряжение обычно релаксирует, а процесс деформации обратим. Тем не менее, при деформации такой системы сильно возрастает тенденция к кристаллизации, так как участки цепей между сшивками в большей или меньшей степени распрямляются, утрачивая свою наиболее вероятную конформацию. Это вызывает уменьшение конфигурационной энтропии. Следовательно, при постоянно действующем напряжении переход в кристаллическое состояние связан с меньшей затратой энтропии. Уменьшение общей энтропии плавления повышает температуру кристаллизации, по сравнению с тем же веществом в отсутствие деформации. Возрастающая тенденция к кристаллизации хорошо демонстрируется в известных опытах с натуральным каучуком и полиизобутиленом, которые чрезвычайно медленно кристаллизуются в отсутствие внешнего напряжения, но с удивительной быстротой и легкостью при растяжении. [c.170]

    Следующее из теории и подтвержденное экспериментально уменьшение напряжения при развитии кристалличности в одноосноориентированной системе противоречит, на первый взгляд, обычно наблюдаемым зависимостям напряжения от растяжения для сеток натурального каучука. Разрешение этого кажущегося парадокса заключено в различной природе этих двух процессов. Кристаллиты, образованные при изотермическом растяжении в эксперименте последнего типа могут действовать как дополнительные сшивки. При дальнейшем растяжении сегменты в аморфных областях ориентируются гораздо сильнее, чем обычно. Это вызывает пропорционально большее уменьшение энтропии, что, в свою очередь, сказывается в увеличении сокращающей силы. Так как при дальнейшем удлинении кристаллизация продолжается, этот эффект будет возрастать и соответственно ускоряться рост напряжения. [c.183]

    Кристаллизация при растяжении. Характерная особенность мн. аморфных полимеров, находящихся в высокоэластич. состоянии (каучуки, резины),— способность кристаллизоваться при растяжении. Напр., натуральный каучук, в отсутствие внешних воздействий кристаллизующийся чрезвычайно медленно, при растяжении на 300% и больше исключительно быстро переходит в кристаллич. состояние. Однако после прекращения действия внешних сил такой кристаллич. каучук сразу же аморфизуется (если темп-ра пе слишком низка). Легкость К. при растяжении объясняется тем, что в результате распрямления макромолекул уменьшается энтропия системы и поэтому переход к кристаллич. состоянию связан с меньшим (по сравнению с К. в нерастянутом состоянии) ее изменением. В результате кристаллич. состояние оказывается равновесным для нек-рой области темп-р лишь при наличии напряжения. [c.590]

    Огромное практич. значение имеет взаимодействие НК с серой, хлористой серой, органич. перекисями и другими веществами, вызывающими вулканизацию. Вулканизация приводит к образованию сетчатых структур, в к-рых длинные макромолекулы каучука соединены ( сшиты ) между собой атомами серы или другого вулканизующего агента. Технически наиболее цепным свойством НК и особенно его вулканизатов является высокая эластичность. Мягкие вулканизаты (резины) из НК способны нри комнатной темп-ре обратимо растягиваться более чем на 1000% и имеют при этом сопротивление разрыву до 350 кг/сж (исходного сечения). В отличие от кристаллич. тел, деформация НК в пределах 100—200% растяжения не сопровождается изменением объема, а следовательно, и изменением внутренней энергии. В основном эластичность НК сопровождается уменьшением энтропии при растяжении и увеличением ее при обратном сокращении. Поскольку высокая эластичность НК связана с тепловым движением его гибких макромолекул, она может проявляться в той области темп-р, в к-рой это движение достаточно интенсивно. При темп-ре ок. —70° НК утрачивает эластичность даже при очень медленных воздействиях и становится хрупким выше 80—100° НК пластичен, т. к. нри этой темп-ре возникает возможность перемещения отдельных нитевидных макромолекул относительно друг друга. Величина деформации НК зависит не только от величины механич. напряжения, но и от длительности его действия (см. Механические свойства полимеров). При коротком действии сипы участки макромолекул НК не успевают перегруппировываться, и высокая эластичность не проявляется каучук ведет себя нри этом как твердое тело. Чем выше темп-ра, тем короче период релаксации, необходимый для установления равновесия между силой и деформацией. При комнатной темп-ре высокая эластичность НК проявляется, если продолжительность действия силы (в одном направлении) не менее одной стотысячной доли секунды. [c.247]


    Следовательно, при растяжениях ниже 300%, т. е. в наиболее широко применяемой области напряжений, основное значение имеет энтропийный член. Уменьшение энтропии каучука при растяжении может рассматриваться как следствие ориентации макромолекул. Поскольку энтропия является мерой вероятности осуществления состояния, то, очевидно, менее вероятное ориентированное состояние обладает меньшей энтропией, чем неориентированное, как только внешние факторы, обусловливающие деформацию, перестают действовать. В результате теплового движения вытянутые молекулы вновь переходят в неориентированное состояние, имеющее большую термодинамическую вероятность или большую энтропию. Аналогичным образом можно объяснить эластичность мускулов. При больших деформациях уравнение (ИЗ) уже непригодно изменение внутренней энергии при больших удлинениях обусловлено местными изменениями структуры или начинающейся кристаллизацией. Поэтому на кривых зависимости напряжения от температуры наблюдается точка перегиба при температурах ниже —60° это вызвано стеклованием каучука. В то время как у каучуков эластичность в основном определяется энтропией, для стали эластические изменения практически происходят за счет изменения внутренней энергии. [c.241]

    На рис. 8 показана кривая усилие — удлинение для типичного вулканизированного каучука, расчлененная на две составляющие кривые для учета вклада в процесс растяжения энтропии и внутренней энергии. Это означает, что кроме рассмотрения энтропии, как это [c.59]

    При больших удлинениях вступает в действие механизм высокой эластичности, когда при растяжении происходит уменьшение энтропии системы. Работа приложенного усилия направлена против теплового движения элементов структуры каучука, и тепловой эквивалент этой работы входит в положительный эффект Джоуля. Следовательно, в этом случае выделение теплоты растяжения аналогично тому тепловому эффекту, который наблюдается при сжатии газа. [c.226]

    Эта формула получена теоретически и основана на представлении о том, что каучукоподобное вещество сопротивляется растяжению по той же самой причине, по которой газ противодействует сжатию в обоих случаях деформированное состояние является состоянием с более низкой энтропией и в обоих случаях изменением внутренней энергии при деформации можно пренебречь. Пониженная энтропия растянутого каучука обусловлена меньшим числом конформаци11 цепи, соответствующих внешним ограничениям. [c.28]

    К противоположному случаю относятся мягкие (или пластифицированные) каучуки, обладающие модулем Юнга примерно от 10 до 10 дин/см и обратимой эластичностью с удлинением до нескольких сот процентов. Если такой материал растянуть до некоторой длины в пределах умеренного растяжения и затем понижать температуру, поддерживая длину постоянной, то напряжение будет падать пропорционально понижению абсолютной температуры. Согласно ур. (XVII, 3), это означает, что в данном случае изменение внутренней энергии, связанное с этим напряжением, равно нулю. Следовательно, сила, стремящаяся сократить длину растянутого каучука, всецело обусловлена уменьшением энтропии его при растяжении. Иначе говоря, это означает, что гибкие цепи макромолекул имеют в растянутом каучуке меньшее число возможных конформаций, чем в нерастянутом. Ввиду того что внутренняя энергия каучука не изменяется при растяжении, затрачиваемая при этом работа должна целиком превращаться в теплоту и, следовательно, каучук должен при растяжении нагреваться это и подтверждается опытными данными. [c.568]

    Учет сил межмолекулярного взаимодействия требует при рассмотрении процесса деформации иметь в виду изменение не только энтропии образца, но и его внутренней энергии. Действительно, при растяжении эластомера происходит не только распрямление отдельных кГакромолекул (и разрущение надмолекулярных образований), но и изменение расстояний между ними. Распрямление макромолекул создает благоприятную возможность для упорядочения в расположении отдельных звеньев и облегчения кристаллизации. Если каучук не способен кристаллизоваться, распрямление цепей вызывает повышение их жесткости за счет уменьшения числа возможных конформаций и усиления межмолекулярного взаимодействия. Таким образом, при растяжении каучуков наличие сил межмолекулярного взаимодействия приводит к развитию как высокоэластических, так и упругих деформаций. [c.68]

    К противоположному случаю относятся мягкие (или пластифицированные) каучуки, обладающие модулем Юнга примерно от 10 до 10 дин см и обратимой эластичностью с удлинением до нескольких сот процентов. Если такой материал растянуть до некоторой длины в пределах умеренного растяжения и затем понижать температуру, поддерживая длину постоянной, то напряжение будет падать пропорционально понижению - абсолютной температуры. Согласно ур. (XVII, 3), это означает, что в данном случае изменение внутренней энергии, связанное с этим напряжением, равно нулю. Следовательно, сила, стремящаяся сократить длину растянутого каучука, всецело обусловлена уменьшением энтропии его при растяжении. Иначе говоря, это означает, что гибкие цепи макромолекул имеют в растянутом каучуке меньшее число возможных конформаций, чем в иерастянутом. Ввиду того что внутренняя энергия каучука не изменяется [c.576]

    Когда обсуждалось применение уравнения (12.2) к процессу кристаллизации, мы видели, что деформация облегчает кристаллизацию благодаря дополнительному уменьшению энтропии системы. Пока вклад деформации в эффект снижения энтропии не достигнет определенной критической величины, кристаллизация не начнется. Так, при растяжении натурального каучука при комнатной температуре до 4007о плотность практически пе меняется, а при дальнейшем растяжении начинается резкий рост плотности за счет кристаллизации. [c.182]

    I. При деформации реальных каучуков происходит изменение объема, т. е. = t onst. Это означает, что средние расстояния между цепями изменяются, а следовательно, изменяются и энергии аэаимоденствня. Иными словаиги, деформация рсаль (ых каучуков сопровождается не только изменением энтропии, но и изменением внутренней энергии, особенно прн больших степенях растяжения, когда Происходит кристаллизация натурального и некоторых синтетических каучуков При этом наблюдается выделение большого количества тепла (тепловой эффект кристаллизации) .  [c.165]

    ДЛИНЫ. Основываясь на этом факте и в соответствии с теорией высокоэластичности [3], вулканизат рассматривается как совокупность гибких линейных цепей бесконечной длины со слабым межмолекулярньш взаимодействием, соединенных редкими химическими связями, а вулканизация — как процесс образования этих связей за счет сшивания линейных макромолекул каучука (рис. 10.1). Поперечные связи (сшивки) расположены так редко, что между ними укладываются большие отрезки гибких цепных молекул, причем их присутствие не влияет на перегруппировки макромолекул под действием внешней нагрузки (т. е. не изменяет высо-коэластнческих свойств эластомера). Сшивки ограничивают только необратимые перемешеиия цепных молекул, т. е. уменьшают текучесть (пластическую или остаточную деформацию). Если теперь допустить, что отрезки цепи между сшивками, образующие сетку (их называют активные цепи), имеют одинаковую плотную длину (или одинаковую молекулярную массу Мс), и принять, что в не-деформированном состоянии расстояние между концами цепей определяется функцией Гаусса, а также сделать некоторые другие допущения, упрощающие расчет, то, суммируя энтропии отдельных цепей в исходном и в деформированном состоянии, по их разности можно найти работу деформации образца, а дифференцируя по удлинению функцию, определяющую работу деформации, найти зависимость между приложенным напряжением и деформацией образца. Такие вычисления, впервые сделанные Уоллом в 1942 г., привели к следующему выражению для простого растяжения редкой трехмерной сетки  [c.213]

    Мы пока не останавливаемся на других характеристиках термодинамического поведения каучука, пидробно рассмотренных в монографической литературе [ ]. Б Ш главе излагается современная статистическая термодинамика каучука и подобных ему полимеров. Для нас сейчас существенны основные факты энтропийная природа высокоэластичности, уменьшение энтропии каучука при его растяжении. Это уменьшение, оченидно, означает переход из более вероятного состояния в менее вероятное. Аналогичным образом энтропия идеального газа уменьшается при его изотермическом сжатии, в то время как его внутренняя энергия остается постоянной. Смысл уменьшения вероятности состояния в этом последнем случае заключается в соответствующем изменении расположения большого числа независимо движущихся частиц — молекул идеального газа. Нагревание каучука при его адиабатическом растяжении подобно нагреванию идеального-газа при его адиабатическом сжатии. И в том, и в другом случаях система переходит из состояния, которому отвечает большая термодинамическая вероятность и, следовательно, большая энтропия, в состояние с меньшей вероятностью и энтропией. Аналогия в свойствах каучука и идеального газа заставляет думать, что и каучук состоит из большого числа независимых элементов, изменяющих свое относи- [c.12]

    Каучуки по своему термоэластичному поведению имеют поразительное сходство с газами. При постоянстве деформации напряжение пропорционально абсолютной температуре отсюда следует, что напряжение в растянутых каучуках, подобно давлению газа, скорее связано с изменением энтропии деформированного материала, чем с изменением внутренней энергии. Количественно поведение растянутых каучуков, как и газов под давлением, определяется их свободной энергией Р, которая в случае простого растяжения находится так  [c.74]

    Флори и Реиер [381 впервые дали количественное объяснение свойств гелей на основании расчета свойств полимерных молекул, соединенных в бесконечную трехмерную сетку, и показали, что свойства, выведенные для такой системы, удовлетворительно отвечают наблюдаемым свойствам необратимых гелей. В своей ранней работе Флори построил молекулярные сетчатые структуры для малых полифункциональных молекул и показал путем статистических вычислений, что гелеобразование наступает тогда, когда образуется бесконечная трехмерная сетчатая структура. Вначале количество этой сетчатой структуры весьма невелико, но она охватывает всю массу раствора и сообщает ему неподвижность. По мере протекания реакции все большее число молекул принимает участие в образовании сетчатой структуры и жесткость системы увеличивается. Теория Флори была распространена Штокмейе-ром [391 на возникновение молекулярных сетчатых структур путем образования поперечных связей в растворимых высокомолекулярных линейных полимерах. Он показал, что для образования геля из такого полимера необходимо иметь по крайней мере одну поперечную связь на каждые две имеющиеся в начале молекулы. При статистическом рассмотрении вопроса этого вполне достаточно для образования бесконечной сетчатой структуры при условии, что поперечные связи расположены беспорядочно и что не происходит образования поперечных связей внутри одной молекулы. Очевидно, что имеющееся вначале число связей недостаточно для того, чтобы соединить все молекулы в сетчатую структуру, но дальнейшее образование поперечных связей вводит все большее количество молекул в эту структуру и увеличивает жесткость системы. Согласно кинетической теории эластичности каучука, сопротивление деформации обусловлено главным образом растяжением гибких молекул между точками, в которых образованы поперечные связи, уменьшающие число возможных конфигураций и, таким образом, уменьшающие энтропию. Вычисления, сделанные на основании этих предпосылок, оказались успешными в отно-н1ении оценки влияния процесса вулканизации на физические свойства кяучу- [c.324]


Смотреть страницы где упоминается термин Энтропия при растяжении каучука: [c.60]    [c.60]    [c.120]    [c.149]    [c.187]    [c.41]    [c.165]    [c.72]    [c.165]    [c.56]    [c.225]    [c.61]    [c.12]    [c.20]    [c.161]    [c.165]   
Разрушение твердых полимеров (1971) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Каучуки растяжение



© 2024 chem21.info Реклама на сайте