Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт определение в железе

    Изучением металлов вначале в основном занимались геохимики [342], затем, после того как стало известно о вредном действии металлов на технологию переработки и эксплуатационные свойства топлив, ими начали заниматься химики и технологи (табл. 110). Изучение распределения микроэлементов по нефтяным фракциям также выявило определенные зависимости, важные для технологических процессов [344] (табл. 111). Например, железо, кобальт, хром, марганец, рубидий в повышенных концентрациях обнаружены во фракциях тяжелых нафтеновых нефтей. Ртуть, сурьма, скандий, наоборот, обнаружены в более высоких концентрациях в сравнительно легких метановых нефтях. Независимо от типа нефти выделены микроэлементы, для которых отмечена четкая приуроченность, с одной стороны, к легким фракциям, а с другой— к тяжелым (кобальт, хром, железо). [c.300]


    Аноды при рафинировании отливают в четырехугольных изложницах с вставленными при заливке ушками из стальной полосы (см. рис. У1И-9). При рафинировании никеля масса анодов обычно составляет 200—250 кг размеры анодов 0,8 X 0.75 м. Толщина анода зависит от задаваемой продолжительности его растворения. При рафинировании кобальта и железа не придерживаются определенных технологических норм — эти производства (особенно чистого железа) малы по объему. Остатки от растворе- [c.296]

    Г, Определение железа в солях кобальта [c.158]

    Электролитическое получение порошка никеля. В крупно-тоннажном производстве порошков никеля, кобальта и железа и поликомпонентных композиций современными методами порошковой металлургии возрастает масштаб получения чистых порошков карбонильным способом и определенное место отводится электролитическому получению порошков этих металлов. [c.412]

    Определению мешают также сульфаты, повышающие вес осадка [2903], и соли рубидия и цезия не мешают соли лития, магния, кальция, цинка, кобальта, никеля, железа, марганца, алюминия. [c.30]

    Тиогликолевая кислота образует с тяжелыми металлами внутрикомплексные окрашенные соединения. В кислой среде золото, серебро и медь дают устойчивые желтые комплексы. В аммиачной или слабокислой среде образуют комплексы молибден (VI), вольфрам (VI), уран (VI), никель (II), кобальт (II), висмут (III), железо (III) и марганец (II). Применяется для фотометрического определения железа (III) как добавка при определении олова (II) с дитиолом, а также для определения молибдена (VI) и рения (VII). [c.208]

    Свойства. Фиолетовый кристаллический порошок. Приме- j няют для определения цинка при pH 9—Ю. Методом обратного титрования солью цинка определяют кальций, германий (IV), кобальт, медь, железо (III), индий (III), марга- < нец (И) и свинец при pH 9—10. Переход окраски от синей к красной. ] [c.278]

    Определение рутения ( 1,3%) в искусственных сплавах плутония с кобальтом (или железом), содержащих стабильные изотопы элементов — продуктов деления, основано на измерении светопоглощения хлоридного комплекса Ru (IV) при 485 ммк (6485 5300) [718]. Подготовка пробы к анализу меняется в зависимости от состава растворенного образца. [c.408]

    Для определения рения в титановых и циркониевых сплавах, содержащих кобальт, никель, железо, алюминий, медь и другие компоненты, применяются те же методы, что и для анализа других сплавов [109, 150, 177, 212, 273, 277, 279, 359, 410, 454, 455, 513, 597, 938, 1262]. [c.258]


    К анализируемому раствору, содержащему 80—100 мг кобальта, прибавляют 30 мл 0,2 N раствора едкого натра и 80 мл 3%-ного раствора перекиси водорода, кипятят 25 мин., вводят 30 мл 0,1 N раствора соли Мора в 6 Л серной кислоте и 15 мл 5 N раствора серной кислоты, перемешивают, охлаждают и оттитровывают избыток ионов двухвалентного железа 0,1 N раствором перманганата. Метод применим для определения кобальта в присутствии небольших (до 10% от содержания кобальта) количеств железа и никеля. [c.112]

    Разработан способ модифицирования ППУ органическими реагентами, включающий предварительное пластифицирование таблеток ППУ и последующую их обработку небольшим объемом раствора реагента в ацетоне. Таблетки замачивают в пластификаторе - три-и-октиламине (TOA) в течение суток, избыток TOA удаляют высушиванием между листами фильтровальной бумаги. Затем на таблетку наносят 0,2-0,3 мл раствора иммобилизуемого реагента в ацетоне. После испарения ацетона таблетки можно использовать. Способ обеспечивает прочное удерживание реагентов и их равномерное распределение в таблетке. С применением ППУ и указанной методики модификации были разработаны тест-методы определения никеля и хрома(УГ) с использованием первого варианта, без модификации, определяют кобальт(П), железо(Ш), титан(1У), поверх- [c.222]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Кобальт. Методы определения железа [c.582]

    Церий и его двуокись. Химико-спектральный метод определения железа, кобальта, марганца, меди и никеля [c.589]

    Выбор способа разложения пробы и переведения ее компонентов в раствор зависят от нескольких факторов, которые необходимо учитывать при обосновании схемы химического анализа. Прежде всего обращают внимание на неорганическую или органическую природу основы (матрицы) объекта, химический состав образца, химические свойства определяемого компонента. Так, при определении одного и того же элемента (например, кобальта, цинка, железа) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется со- [c.44]

    Совместное количественное определение железа, кобальта и никеля проводили с помощью ПАН-2 [792], измеряя оптическую плотность при трех длинах волн и решая затем систему уравнений [c.105]

    Селективность фотометрического определения никеля с помощью ПАН-2 повышают [175] экстракцией 5%-ным раствором амберлита ХЕ-204 в ксилоле ионов железа(111) (2—10 М. НС1), цинка (2—6AI НС1), меди (6 М НС1) и кобальта (8 М НС1). Двумя последовательными экстракциями из раствора 8 М НС1 можно количественно отделить 5—15 мкг никеля от 5—20 мг кобальта. Определению не I мешают хром(111) и марганец. Метод применен для определения i никеля в кобальте. [c.149]

    Наиболее распространенным адсорбатом является водород. Его широко используют для определения поверхностей платины [19, 20], никеля [4, 6, 7], кобальта [4], железа [3], осмия, [c.43]

    Определение никеля, марганца, кобальта и железа в тугоплавких сплавах с использованием анионообменных разделений [1016]. [c.347]

    Кобальт-58 Желеао-59 Хром-51 Водород-3 (тритий) Стронций-85 Золото-198 Определение степени поглощения организмом витамина В (содержащего кобальт) Определение скорости образования эритроцитов (они содержат железо) Определение объема крови и продолжительности жизни эритроцитов Определение количества воды в организме определение усвоения меченого витамина О в организме исследования в химии клетки Получение снимка костей Получение снимка печени [c.350]

    В основу метода положено предварительное выделение железа экстракцией дибутиловым эфиром б виде HFe l , реэкстракцией этого соединения в водную фазу с последующим определением железа в виде ферроин-иодида. Для повыщения чувствительности метода можно вместо иодид-иона использовать сульфофталеиновые красители, например бромфеноловый синий. При этом образуется ионный ассоциат (Vax 610 нм, е = 5,9 10 ). Но этот последний метод при непосредственном определении железа в солях кобальта имеет два недостатка 1) очень узкий интервал значений pH прн экстракции ассоциата (pH 8,7—8,9) 2) малую избирательность, так как следы никеля, кобальта и меди при замене иодида на бромфеноловый синий дают интенсивно окращепные, экстрагирующиеся ионные ассоциаты. [c.158]


    При определении никеля для устранения мешающего действия висмута, железа и кобальта ионы последных маскируют введением тиогли-колевой кислоты. Небольшие количества ионов кобальта и железа можно маскировать также добавлением винной кислоты. Для маскирования больших количеств этих ионов зекомендуют прибавлять в раствор добавки К,К-ди(оксиэтилен)глицина. [c.228]

    Никель и кобальт обладают близкими химическими свойствами и восстанавливаются почти при одном и том же потенциале. Для определения никеля в присутствии кобальта, например в продуктах кобальтового производства, удобно полярографировать оба элемента в растворе аммиака и хлорида аммония или пиридина и его хлорида. Кобальт связывается этими веществами сильнее никеля, и на поля-рограмме получается отдельная волна никеля. Влияние меди при определении цинка легко устранить, прибавляя раствор цианида калия. Цианидный комплекс меди настолько устойчив, что не дает полярографической волны. Для раздельного определения железа и меди применяют раствор ЭДТА. [c.506]

    Особый интерес представляют способы адсорбционного концентрирования, связанные с применением электродов с модифицированной поверхностью. Заметим, что придание поверхности электрода специфических свойств путем соответствующей обработки (нанесение полимерной пленки, пришивка функциональных групп или ферментов и т.п.) существенно повышает селективность определений методом ИВА. Модифицирование электродной поверхности зачастую обеспечивает избирательное определение соединений с близкими окислительно-восстановительными свойствами либо электрохимически инертных на обычных электродах, когда прямое детектирование требует высоких потенциалов. Так, нанесение на поверхность графитового электрода порфириновых комплексов кобальта облегчает восстановление кислородсодержащих органических соединений. Аналогичные эффекты наблюдаются при модифицировании электродной поверхности сорбентами, фенантролиновыми и дипиридильными комплексами кобальта и железа, макроциклами, К4-комплексами, которые необратимо адсорбируются на углеродных материалах. Такие электроды проявляют высокую селективность к определяемым веществам и имеют низкие пределы обнаружения. [c.434]

    Так, при определении одного и того же элемента (например, кобальт, цинк, железо) в крови, пищевых продуктах или сплавах и минералах способ разложения образцов определяется соотъетствешю органической или неорганической природой объекта. Разложение и перевод в раствор проб силикатов проводят в зависимости от определяющего их состав соотношения MeO/SiOj. Если в составе силиката преобладают оксиды металлов, то пробу растворяют в кислотах, если — оксид кремния, то проводят сплавление или спекание. При определении в силикате содержания железа, титана, алюминия пробу сплавляют со щелочными плавнями при определении суммы щелочных металлов спекают с СаО и a Oj. [c.70]

    Разделение дитизоном. Дитизон применяется главным образом для отделения небольших количеств кобальта от посторонних элементов перед его фотометрическим определением в силикатных породах, биологических и растительных материалах и др. Дитизонат кобальта образуется при pH от 5,5 до 8,5. Это дает возможность отделить от кобальта серебро, медь, ртуть (II), палладий (II), золото (III), висмут, т. е. элементы, экстрагирующиеся раствором дитизона в хлороформе или четыреххлористом углероде при pH менее 4. Экстрагирование дитизоном из аммиачного раствора, содержащего цитрат, отделяет кобальт от железа, хрома, ванадия и многих других металлов. Цинк, свинец, никель и кадмий при указанных условиях экстрагируются вместе с кобальтом, однако если экстракт обработать разбавленным раствором соляной кислоты, то дитизонаты цинка, свинца и кадмия разлагаются и переходят в водную фазу, а дитизонат кобальта остается в неводном растворе без изменения [827]. [c.76]

    Разделение ацетилацетоном. Ацетилацетон реагирует практически со всеми металлами, образуя устойчивые внутрико.мп-лексные соединения, не растворимые в воде, но растворимые полярных органических растворителях [1101]. Предложен метод отделения небольших количеств кобальта от железа экстракцией ацетилацетоната кобальта четыреххлористым углеродо.м из аммиачных растворов, содержащих этилендиаминтетрауксусную кислоту [20]. Вместе с кобальтом в неводный слой переходят также ацетилацетонаты меди, никеля, свинца, кадмия, цинка и марганца. Отделение бериллия от кобальта и многих других элементов основано на том, что из водного раствора с pH 9, содержащего ко.мплексон III и ацетилацетон, хлороформом извлекается только ацетилацетонат бериллия [19]. Экстрагирование ацетилацетоната трехвалентного кобальта описано в работе [225]. Разработана методика определения кобальта, основанная на предварительной экстракции ацетилацетонатов железа и кобальта [512]. Предложен способ выделения следовых количеств кобальта и других элементов из золы биологических материалов экстрагирование.м ацетилацетоно.м [680]. [c.78]

    Этилксантогенат Со(С2Н50С82)г [262]. Этилксантогенат кобальта растворим в дихлорэтане, хлороформе, четыреххлористом углероде, бензоле и бензине. Метод определения кобальта состоит в экстракции ксантогенатов кобальта, никеля, железа и других элементов четыреххлористым углеродом с последующей обработкой экстракта смесью гидроокиси аммония с тартратом аммония. При такой обработке ксантогенаты железа, никеля и других элементов переходят в водную фазу, а в неводной остается ксантогенат кобальта. Оптическая плотность экстракта пропорциональна концентрации кобальта. Чувствительность метода — 0,03 мг кобальта в 10 мл экстракта. Метод был применен для определения кобальта в никеле, солях никеля, железоникелевых рудах и сталях. [c.154]

    Метод малочувствителен — 0,01 мг Со в 50 мл конечного раствора. Трехвалентное железо и медь мешают определению, но влияние этих элементов можно устранить восстановлением нх раствором 8пСЬ [316] или осаждением в виде сульфида меди и основного ацетата железа [853]. При этом удается определять кобальт в присутствии меньшего или равного количества никеля и при соотношениях марганца к кобальту 40, железа к кобальту < 125 и меди к кобальту <10. При фото.метрическом определении кобальта в виде хлорида следует измерять свето-поглащение при 625 ммк, в этих условиях хлоридные комплексы железа, никеля и медп поглащают очень незначительно [758]. [c.160]

    Определение кобальта в виде оксалатного комплекса [272, 546, 547, 1450]. При окислении двухвалентного кобальта двуокисью свинца в оксалатном растворе, забуференном уксусной кислотой II ацетатом аммония, образуется зеленый триоксалат-ный комплекс трехвалентного кобальта Со(С204)зЗ-. Максимум светопоглощения зеленого раствора находится при 600 ммк. 20-кратное по отношению к кобальту количество железа (П1), никеля, алюминия и 2-кратное количество хрома (1П) не мешают определению. 2-кратные количества меди и равные количества марганца значительно увеличивают величину поглощения. [c.161]

    Задачей качественного анализа является не только определение элементов, находящихся в данном исследуемом неществе, но также и оденка их относительных количеств. Продажный хлористый марганец. получаюЩ ИЙсл, например, из пиролюзита, почти в-сегда содержит следы кальция, магния, никеля, кобальта и железа. Если бы аналитик,. найдя все эти вещества, своем отчете указал, что исследованное вещество состоит из хлористых соединений кальция, магння, никеля, кобальта, железа и ма рган.ца , то это понятно, могло бы привести к ошибочным заключениям. Ответ аналитика должен был бы быть следующим исследованное вещество является хлористым марганцем с примесью сле. юв кальция, магния и т. д. . [c.486]

    Вовси И Добровольская сообщили о применении хлорной кислоты для определения кобальта и железа в стеллите (сплав кобальта, вольфрама, хрома и углерода, не содержащий железа). Метод предусматривал окисление хрома хлорной кислотой с последующей отгонкой хрома в виде хлорокиси хрома СгОзСЬ. Таким образом, хром количественно отделяли от кобальта и железа, каждый пз которых затем определяли соответствующими методами. [c.123]

    При использовании золь-гель-технологии в получаемый силикагель включают 1,10-фенантролин, 1 -нит-розо-2-нафтол, ализарин, которые применены для определения железа(П), кобальта(И), алюминия(П1) и pH (табл. 11.7). Индикаторными порошками заполняют капилляры размером 0,7x100 мм. Концы капилляров закрывают фильтровальной бумагой (около 3 мм). Концентрацию определяют по длине окрашенной зоны носителя после того, как принудительно пропускаемый с помощью шприца ши гидростатического давления анализируемый раствор поднимется за счет капиллярных сил. В последних двух случаях к ивдикаторной трубке присоединяют дополнительно пластиковую трубку (2x200 мм), при помощи которой определяют объем пропущенного через индикаторную трубку раствора. [c.220]

    Перьков и Шевцов [344] показали возможность раздельного определения железа(И1), кобальта и никеля с помощью ПАН-2. Удовлетворительные результаты получены при измерении оптических плотностей в области 540—590 нм, в то время как при измерении оптических плотностей при 460—505 нм получаются большие ошибки из-за наложения спектров. [c.107]

    Определение кобальта в железе [774, 775]. Комплекс кобальта с ПАР экстрагируют раствором зефирамина в растворителе. Железо (до 3 мг) и никель (до 50 мг) маскируют соответственно ЦДТА и ЭДТА при кипячении. Коэффициент вариации 0,09. Метод применим к анализу стали. [c.146]


Смотреть страницы где упоминается термин Кобальт определение в железе: [c.269]    [c.236]    [c.366]    [c.576]    [c.171]    [c.350]    [c.106]    [c.52]    [c.173]    [c.350]    [c.216]    [c.47]    [c.61]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение



© 2025 chem21.info Реклама на сайте