Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Имидазол как катализатор

    Этилендиамин, этанол 2- Метил имидазол Катализатор и условия те же. Выход 27% [1181] [c.253]

    Очевидно, что для реакции силилирования необходимо не только наличие основания для связывания кислоты, но и нуклеофильный катализатор. Скорость реакции при этом меняется в следующей последовательности триэтиламин < пиридин < имидазол. [c.164]

    Почему при участии основания скорость реакции возрастает Можно указать много причин. В основном это происходит благодаря тому, что основание (имидазол) связывает в переходном состоянии (ПС) протон атакующей молекулы воды, так что на атоме кислорода в составе последней сосредоточена повышенная электронная плотность. Таким образом, этот атом кислорода воды становится более отрицательно заряженным и возрастает его способность передавать электронную пару карбонильной группе. Суммарный результат — понижение свободной энергии активации в присутствии основания. В отсутствие катализатора протон акцептирует вторая молекула воды, которая обладает меньшей основностью и, следовательно, является менее эффективным катализатором. [c.196]


    Приведем здесь некоторые примеры высокомолекулярных соединений-катализаторов, в частности содержащих имидазол, которые обладают омыляющей способностью и во многом напоминают сериновые протеазы. [c.294]

    Очевидно (рис. 5.13), что при высоком содержании имидазола в сополимере не хватает анионных центров для связывания положительно заряженного субстрата. Однако при низком содержании имидазола полимерная молекула начинает вести себя как полианион. Как и ожидалось, полимерный катализатор оказался гораздо менее эффективным с нейтральными субстратами, [c.298]

    Обнаружено, что с увеличением размера гидрофобной груины в молекуле эфира скорость катализируемого гидролиза также возрастает. Однако эти эфиры, ио существу, обнаруживают одинаковую активность к имидазолу как нуклеофилу. Следовательно, опираясь на пространственные модели, можно предположить, что две СНг-группы между системой ароматических колец и эфирной груиной необходимы для обеспечения гидрофобного контакта с а-новерхностью стероидной молекулы, а гидрофобные взаимодействия между субстратом и катализатором благоприятствуют протеканию катализируемого имидазолом гидролиза эфиров. [c.314]

    Дегидрирование 2-И. при 350-400 °С на Ni-катализаторе приводит к имидазолу. [c.210]

    Коэффициенты р и а в уравнениях (6-80) и (6-81) характеризуют чувствительность скорости реакции к изменению основности или кислотности катализатора. Нетрудно показать, что в том случае, когда р или а близки к 1, общий основный или общий кислотный катализ обычно отсутствуют и скорость реакции определяется только специфическим катализом гидроксильным или водородным ионом [53]. При уменьшении р или а до О вклад основного или кислотного катализа тоже становится исчезающе малым. Таким образом, общий основный или общий кислотный катализ наиболее существен при значениях коэффициентов р и а, близких к 0,5. При этих условиях, как нетрудно видеть, такое относительно слабое основание, как имидазол (в боковой цепи гистидина), может оказаться необычайно эффективным катализатором при pH 7. [c.54]

    Экспериментальным путем было установлено, что в молекулах сериновых протеаз, работающих при pH 7—8, в роли общего основного катализатора выступает имидазол с р/Сд 7. Гидроксильная группа серина имеет pKN 12,5, откуда Ар/Са = рЛ а (акцептор)—р/Са (донор) =—5,5 единицы pH. В случае кислых сульфгидрильных протеаз (р/С 8,5) общее основание имеет р/Са 3,5, так что и здесь Ар/Са = —5 единиц pH. Очевидно, разность Др/Са = —5 является оптимальной для достижения максимальных скоростей общего основного ферментативного гидролиза амидов. Природа уходящей группы субстрата не имеет большого значения при выборе конкретной пары нуклеофил — общее основание. Об этом свидетельствует тот факт, что сериновые протеазы эффективно катализируют гидролиз ацильных производных с самыми различными уходящими группами. [c.141]


    Третичный амин, имидазол, нашел разнообразное применение как нуклеофильный катализатор благодаря следующим особенностям  [c.166]

    Катализ имидазолом обязан сочетанию свойств хорошего нуклеофила и лабильного промежуточного продукта. Нуклеофильность имидазола по отношению к л-нитрофенилацетату в 10 раз выше нуклеофильности ацетат-иона. Однако отношение скоростей гидролиза Ы-ацетилимидазола и уксусного ангидрида, продуктов нуклеофильной атаки соответствующих агентов на субстрат, составляет примерно 0,1. Таким образом, вновь выполняются условия эффективного катализа нуклеофилом — высокая активность катализатора и лабильность промежуточного продукта. [c.167]

    Следует отметить, что возможны и другие изменения механизма катализа. Если для соединения с хорошими уходящими группами, например для уксусного ангидрида и п-нитрофенилацетата, кинетический порядок реакции по имидазолу равен единице, то в случае ацетатов менее кислых фенолов порядок по имидазолу может быть равен двум (первый по нуклеофилу и первый по общему основанию) с одновременным сохранением маршрута первого порядка по имидазолу, в котором катализатор действует как нуклеофил. В родственных реакциях ацетатов [c.179]

    Данные, полученные с помощью различных методов исследования, указывают на участие по крайней мере трех аминокислот в построении активного центра рибонуклеазы двух остатков гистидина и одного остатка лизина. Гидролиз РНК (рис. 3.6) проходит в два этапа переэтерификация и последующий гидролиз. Отметим, что при физиологических значениях pH одно из двух имидазольных колец протонировано, а второе —нет. Имидазоль-ные кольца функционируют как общеосновной — общекислотный катализатор, а положительно заряженный остаток лизина, вероятно, стабилизирует пентакоординационный интермедиат. [c.128]

    Имидазол играет роль нуклеофильного катализатора, однако в щелочной среде ОН--ион способен выполнять роль акцептора протонов, способствуя атаке нуклеофильного катализатора (имидазола) на субстрат. Таким образом, ОН -ион выступает как общеосновной катализатор. В качестве переходного состояния можно постулировать тетраэдрическое промежуточное соединение  [c.194]

    Для того чтобы полнее показать значение имидазола в катализе, рассмотрим его в роли основного катализатора, который очень часто участвует в химических реакциях. Наиример, гидролиз карбоновых кислот катализйруется и по общекислотному, и по общеосновному механизму. [c.195]

    Ясно, что протонированное имидазольное кольцо (низкое значение а) не участвует в катализе. Очевидно, что полимерный катализатор менее эффективен при а<0,8, ио более эффективен при а>0,8. Однако поскольку рК образования аниона имидазола 14, то невозможно на этом полимере изучать поведение каталитической системы как функцию (полной) диссоциации в гндроксилсодержашей системе. Для этого лучше использовать ноливинилбензимидазол, для которого рЛ 12,2. Скорость гидролиза того же субстрата действительно резко возрастает при щелочных значениях pH. Интересно, что полимер Ы-винилимидазола, который ие может перейти в анионную форму, гораздо менее эффективный катализатор. [c.296]

    Поскольку для имидазола р/( = 7,1, а для соответствующего стерондимидазола р/( = 7,2, то основность катализатора, ио-ви-цимому, не относится к тем факторам, которые ответственны за [c.314]

    В водном растворе бифункциональные катализаторы также эффективны, однако, как правило, приводят к сравнительно небольшим ускорениям. Например, гидролиз 4-оксибутиранилида очень слабо катализируется имидазолом, в то время как фосфат, обладающий такой же основностью, приводит к более чем десятикратному ускорению реакции [551. Это, пожалуй, один из наиболее сильных эффектов такого рода, наблюдавшихся в водном растворе. [c.100]

    Электрофильный и нуклеофильный катализ. При электрофиль-иом катализе применяются кислоты Льюиса (А1С1з, ВРз, пС и др.). Примером таких процессов являются реакции Фриделя — Крафтса. Нуклеофильными катализаторами являются, например, пиридин, ароматические амины, имидазол. [c.238]

    Было показано, что внутримолекулярная переэтерификация этил-2-гидроксиметилбензоата с образованием фталида катализируется имидазолом и другими основаниями [554]. По-видимому, катализатор способствует отщеплению протона от группы ОН на лимитирующей стадии (общий основной катализ). [c.131]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]


    Прн алкнлироваиии имидазола йодистым метилом в избытке 50%-ного водного раствора КаОИ выход 1-метилимидазола составляет 55% [295]. Более высокие выходы получены при алкилировании в жидком аммиаке в присутствии амида натрия [296]. Метилирование имидазола йодистым метилом в спирте в присутствии этилата натрия (выход 64%) [297] или щелочи (выход 69%) [298] по данным, полученным на кафедре органической химии РГУ, дает менее удовлетворительные результаты. В работах [299, 300] предложено проводить Н-алкилирование в двухфазной системе с использованием в качестве катализаторов краун-эфиров или четвертичных аммониевых солей. [c.96]

    Имидазол-4,5-дикарбоновую кислоту делят на две части. Каждую часть тщательно смешивают с 0,5 г медпо-хромового катализатора ( Синт. орг. преп. , сб. 2, стр. 301) или окиси меди в порошке (примечание 9) и полученн /ю смесь переносят в колбу Клайзена емкостью 250 мл со специальным боковым отводом (стр. 68). Колба, служащая приемником, свободно висит на боковом отводе. Колбу Клайзена осторожно нагревают голым пламенем горелки. После небольшого головного погона (95—100°) температура резко повышается до 260° (примечание 10) и имидазол перегоняется при 262—264°. С целью очистки вещество растворяют в 60—70 г бензола, раствор кипятят в течение нескольких минут с 2—Зг угля для обесцвечивания (примечание 11), смесь фильтруют через предварительно нагретую воронку Бюхнера и охлаждают фильтрат до 10 в течение 2 час. Выход составляет 13—14,5 г (68—76% теоретич.). Препарат бесцветен т. пл. 88—90° (примечание 12). [c.256]

    N-Ацетилимидазолы в присут. Pd-катализаторов в уксусной к-те гидрируются в тетрагидроимидазолы (имидазоли-дины), к-рые легко гидролизуются до диаминов. [c.210]

    Имидазол наиболее устойчив в реакциях восстановления он не восстанавливается натрием в жидком аммиаке, концентрированной иодистоводородной кислотой и красным фосфором, цинком и кислотами или водородом в присутствии катализатора. Устойчив и тиазол, но он десульфируется при действии никеля Ренея. Наиболее реакциан(но опособны о ксазолы оод действием натрия в этило- [c.342]

    Описаны полинафтоиленхиназолоны, полученные одностадийной полициклизацией в хлорбензоле или феноле в присутствии в качестве катализатора бензойной кислоты [20]. Осуществлен синтез полихиназолонбензимидазолов высокотемпературной полициклизацией в п-хлорфеноле в присутствии в качестве катализатора эквимольной смеси дифенилфосфиновой кислоты с имидазолом [19]. [c.209]

    Реакция получения сополинафтоиленимидобензимидазолов проведена при нагревании в среде фенолов (фенол, и- и ле-хлорфенолы) в присутствии в качестве катализаторов бензойной кислоты, бензимидазола, имидазола, и-оксибензойной кислоты [86]. Каталитической полигетероциклизацией в феноле при использо- [c.209]

    Успешное введение аминокислотного остатка гистидина в синтетические пептиды по-прежнему представляет собой чрезвычайно сложную проблему. И это связано с крайне неудобными для синтеза химическими свойствами имидазольного цикла. Свободный имидазол — это эффективный катализатор гидролиза сложных эфиров и амидов, а также рацемизации. Сами же гистидиновые производные особенно склонны к рацемизации в процессе пептидного синтеза. Если имидазольный цикл оставить незащищенным, то он может подвергаться ацилированию активированными карбоксильными компонентами, причем получающиеся ацильные производные сами по себе достаточно реакционноспособны и могут затем вызывать перенос ацильной группировки в разных участках молекулы. По этой причине Л т-ацильные производные гистидина часто неудобны в качестве синтетических интермедиатов, если на ряде стадий нужно сохранить находящуюся в боковом радикале защитную группу. Для ступенчатого синтеза можно использовать защищенные уретановые производные, например Ма, Л 1т бис-грег-бут-оксикарбонилпроизводное (63), причем обе защитные группы удаляют непосредственно после введения аминокислотного остатка в пептидную цепь. Так, интермедиат (63) успешно используется в твердофазном синтезе [47]. [c.387]

    Основная группа с рКа около 4, от которой зависят как ацилирование, так и дезацилирование, почти наверняка соответствует имидазолу гистиднна-159. Структурные исследования свидетельствуют также в пользу участия этой группы в качестве общего основного катализатора на первой стадии процесса ацилирования. Есть основания также полагать, что и дезацилирование подчиняется механизму общего основного катализа. При гидролизе циннамоилпапаина [67] и а-А/-бензоил-1-аргинилового эфира [72] обнаруживается большой дейтериевый изотопный эффект растворителя, /Сн/ко 3. Этот факт согласуется с общим основным ка- [c.499]

    Следовательно, вещество В выступает в роли общего основного катализатора. Примерами реакций, катализируемых уходящей группой, могут служить гидролиз уксусного ангидрида под действием ацетат-ионов, гидролиз и тиолирование N-аце-тилимидазола под действием имидазола и гидролиз ацетилфторида под действием фторид-ионов. Этот механистический критериий является, по-видимому, наиболее строгим для различения общего основного и нуклеофильного катализа. [c.108]

    Для того чтобы отличить общий основной катализ от нуклеофильного, можно использовать (хотя и с осторожностью) метод, основанный на применении в качестве растворителя ОгО и наблюдении возникающих при этом изотопных эффектов. Например, при гидролизе д-нигрофенилацетата в присутствии имидазола изотопный эффект растворителя ки о1кг, о = = 1,0 [11]. В случае же катализируемого имидазолом гидролиза этилдихлорацетата изотопный эффект растворителя равен 3,0. Этот результат свидетельствует о том, что в первом случае имидазол действует как нуклеофильный катализатор, а во втором — как общий основной, что согласуется с выводами, полученными выше на основании других критериев. В нуклеофильной реакции изотопные эффекты не должны проявляться, [c.113]

    Первичные продукты нуклеофильной атаки имидазола на ацил- и фосфорилпроизводные, а именно ацил- и фосфорил-имидазолы, обладают достаточно высокой лабильностью. Имидазол катализирует многие реакции производных карбоновых кислот [12]. Наглядным примером, иллюстрирующим закономерности катализа имидазолом, служит гидролиз -нитро-фенилацетата. Когда концентрация субстрата существенно превысит концентрацию катализатора, скорость каталитического процесса зависит от концентрации неионизованной формы нуклеофила. Соответствующие эксперименты с использованием избытка имидазола также согласуются с этим выводом. Более того, спектральными методами удается зафиксировать образование и распад промежуточного лабильного соединения. Этот продукт был выделен в индивидуальном виде при проведении реак- [c.166]

    Как показано в табл. 7.3, гидролиз л-нитрофенилацетата катализируют многие другие производные имидазола и гистидина N-мeтилIrмидaзoл, бензимидазол и его производные, а также содержащие гистидин пептиды. Так как катализ N-мeтилимидaзo-лом столь же эффективен, как и катализ самим имидазолом, то образование нейтрального Ы-ацилимидазола не представляется необходимым. Как и при катализе производными пиридина, каталитические константы скорости для стерически близких ими-дазолов зависят от р/Са катализатора. Следовательно, при анализе эффективности катализа производными имидазола в первую очередь следует обращать внимание на их относительную основность. [c.167]

    Несомненный интерес представляют попытки создания новых синтетических полипептидных катализаторов гидролиза /г-нитрофенилацетата, обладающих более высокой активностью, чем имидазол [13]. Суммированные в табл. 7.3 данные показывают, что эта проблема еще далека от своего окончательного решения. Наиболее эффективным пока остается полипептид L- epил-7-aминoбyтиpил- е -гистидил-у-аминобутирил- е -аспарагиновая кислота, который в семь раз активнее имидазола по от- [c.167]

    Нуклеофильные свойства третичных аминов лучше, чем кар-боксилат-ионов, поэтому можно ожидать, что амины будут более эффективными нуклеофильными внутримолекулярными катализаторами по сравнению с карбоксилат-анионами. Действительно, ароматические эфиры 4-(4 -имидазолил) масляной кислоты очень быстро гидролизуются даже в нейтральных растворах, причем скорость гидролиза определяется концентрацией частиц, содержащих нейтральный имидазол. В этом случае роль имидазола, как и в межмолекулярных реакциях, сводится к нуклеофильной атаке на карбонильный атом углерода сложноэфирной связи, как показано ниже [19]  [c.265]

    Близость катализатора к реакционному центру обычно приводит к тому, что доминирующим становится марщрут с внутримолекулярным нуклеофильным катализом, а не с внещним общеосновным. Например, в случае катализа имидазолом можно привести только один достаточно хорошо обоснованный пример внутримолекулярного промотирования по механизму общего основного катализа, тогда как в межмолекулярных реакциях таких примеров множество. С другой стороны, существует много внутримолекулярных реакций, в которых протонированная карбоксильная группа действует как смешанный катализатор, состоящий из иона гидроксония и нуклеофила в межмолекулярных системах такой тип катализа проявляется значительно реже. [c.271]

    Гидратация сми1-дихлорацетона (в 95%-ном водном диоксане (по объему)] под действием имидазола может также идти по механизму полифункционального катализа. В интервале концентраций имидазола от О до 0,6 моль/л реакция имеет одновременно маршруты первого и второго порядка по катализатору. При катализе другими вторичными и третичными аминами. [c.281]


Смотреть страницы где упоминается термин Имидазол как катализатор: [c.169]    [c.293]    [c.308]    [c.64]    [c.93]    [c.334]    [c.1462]    [c.208]    [c.110]    [c.166]    [c.169]    [c.273]    [c.274]   
Смотреть главы в:

Биоорганическая химия ферментативного катализа -> Имидазол как катализатор


Биохимия Том 3 (1980) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Имидазол

Имидазоли

Имидазолий



© 2024 chem21.info Реклама на сайте