Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма III алкильные соединения

    Научные исследования охватывают ряд направлений общей химии XIX в. Под руководством А. В. Г. Кольбе получил (1847) пропионовую кислоту омылением этилцианида и, таким образом, разработал способ получения карбоновых кислот из спиртов через нитрилы. При попытке выделить свободные радикалы — метил и этил — получил (1849) цинкал-килы, которые в дальнейшем широко использовались в органическом синтезе. Получив алкильные производные олова и ртути, ввел (1852) термин металлоорганические соединения . Наблюдая способность к насыщению разных элементов и сравнивая органические производные металлов с неорганическими соединениями, ввел (1852) понятие о соединительной силе , явившееся предшественником понятия валентности. Синтезировал (1862) органические производные бора и лития. Разрабатывая методы получения цинкалкилов и используя их в синтезах, получил кислоты — пропионовую, метакри-ловую, различные оксикислоты. Изучал (1864) свойства ацетоуксусного эфира. Обнаружил трех- и пятивалентность азота, фосфора, мышьяка и сурьмы. Исследовал (1861 —1868) влияние атмосферного давления на процесс горения. Результаты своих работ изложил в книге Исследования по чистой, прикладной и физической химии (1877). [c.526]


    Прямые реакции с иодом. Стандартный раствор иода, который является слабым окислителем, можно применять для титрования сильных восстановителей. Широкие возможности его применения можно проиллюстрировать кратким перечислением некоторых примеров титрование As в гидрокарбонатном растворе в присутствии крахмала в качестве индикатора определение олова после восстановления его до Sn свинцом, сурьмой, алюминием, никелем или железом определение таллия (III) после восстановления его до таллия (I) определение сульфидов либо прямым титрованием раствором иода, либо косвенным способом, основанным на добавлении избытка иода и последующем обратном титровании определение тиоацетамида титрованием иодом как основа микроопределения ионов тяжелых металлов определение сульфитов обратным титрованием раздельное определение гипофосфита и фосфита в одной пробе титрованием при двух различных значениях pH определение цианидов по количественной реакции с иодом в щелочной среде определение титрованием иодом ряда органических соединений [78], например, полифенолов, аскорбиновой кислоты, меркаптанов, мочевой кислоты, гидразинов, фенолов, дитиогликолевой кислоты, металлорганических меркаптидов, алкильных соединений алюминия и др. Йодные числа применяют в качестве меры нена-сыщенности жиров и масел. Подробное описание многих методов анализа с использованием иода можно найти в руководстве Кольтгофа и Белчера [1]. [c.399]

    ГРУППА УБ МЫШЬЯК, СУРЬМА, ВИСМУТ Мышьяк АЛКИЛЬНЫЕ СОЕДИНЕНИЯ [c.132]

    Это касается металлоорганических соединений щелочноземельных металлов, магния, цинка и алюминия. Большинство металлоорганических соединений остальных (непереходных) металлов — ртути, таллия, олова, свинца, мышьяка, сурьмы, висмута и др.— обладает гораздо более инертной связью С — металл и может содержать в молекуле различные функциональные группы, такие, как ОН, СООН, N11 и т.п. Переходные металлы (от скандия до никеля и их аналоги в следуюш,ем большом периоде периодической системы) дают лишь очень непрочные алкильные и арильные металлоорганиче-ские соединения, неустойчивые или очень мало устойчивые нри комнатной температуре.— Прим. ред. [c.223]

    Электроположительный характер у сурьмы выражен слабо она обнаруживает тенденцию к образованию комплексных соединений, алкильных и арильных производных. [c.481]

    Из алкильных соединений сурьмы довольно легко получаются и несколько лучше исследованы третичные стибины [c.181]

    Аналогичные методики использовались и для обнаружения в воде очень низких (1 пг) содержаний олова, свинца и ртути [61, 63]. При газохроматографическом определении химических форм нахождения олова в морской воде (моно-, ди- и трифенилолово, моно-, ди- и трибутилолово и неорганические соединения олова) МОС восстанавливают до соответствующих гидридов, продувают воду гелием высокой чистоты и улавливают гидриды на силанизированном хромосорбе GAW [64]. Предел обнаружения равен 0,02—10 мг/л. Определение летучих МОС тяжелых металлов (сурьма, висмут, мышьяк, ртуть, теллур, свинец и олово) в природных и антропогенных экологических пробах методом ГХ/МС/ИНП чаще всего осуществляется после превращения их в гидриды или алкильные соединения [66]. [c.583]


    По сравнению с другими группами перфторалкильных соединений перфторалкильные соединения элементов V группы (азота, фосфора, мышьяка и сурьмы) изучены значительно лучше. В известной степени это объясняется их доступностью, особенно производных фосфора и мышьяка. Это дает возможность достаточно полно проследить общее направление изменений свойств перфторалкильных соединений элементов V группы и сравнить эти соединения со многими их алкильными аналогами. Чтобы облегчить такое сравнение, перфторалкильные соединения систематизированы здесь по различным типам соединений, а не по элементам этой группы. [c.48]

    Как и следовало ожидать, способность образовывать кислотные окислы и гидраты при переходе от фосфора к сурьме уменьшается однако во всех случаях сильный индуктивный эффект делает перфторалкильные соединения гораздо более кислыми, чем их алкильные аналоги. Это ясно из табл. 3, в которой при- [c.62]

    Поскольку при применявшихся давлениях частота столкновений между частицами имеет порядок 10 в сек., можно сделать вывод, что при столкновении с молекулами водорода или азота свободный метил не выводится немедленно из строя. Более поздние эксперименты показали, что носителями активных алкильных радикалов могут служить также многие другие газы, например, аргон, гелий, углекислота и даже пары воды I M. стр. 102). Но средняя продолжительность жизни метильног ) радикала должна в некоторой степени зав исеть от диаметр. реакционного сосуда, температуры и природы газа-носителя -. Можно сделать вывод, что в условиях опытов, первоначально проведенных Панетом, большинство процессов вывода метильных радикалов из строя было вызвано их рекомбинацией в этан на стенках сосуда. Удалось подсчитать, что в холодных стеклянных или кварцевых трубках метильные радикалы претерпевают в среднем 1000 столкновений со стенками трубки до того, как произойдет рекомбинация. При 500° С, с использованием гелия в качестве носителя, активность теряется только примерно прп одном из 10 000 столкновений со стенкой. Каждое столкновение метильного радикала с поверхностью свинца или сурьмы нри-1ЮДИТ, повидимому, к химическому соединению. В отличие от атомарного водорода (стр. 95) метильные радикалы не рекомбинируются каталитически на поверхностях платины, желез ,, меди или никеля, поскольку проволочки из этих металлов, по мощенные в струе газа около источника свободных радикалов, не нагреваются. Быстрые реакции происходят, однако, с щелочными металлами — литием, натрием и калием, а также с 1сталличсскими таллием, оловом, мышьяком и висмутом, для которых хорошо известны стабильные металлоорганические [c.142]

    Большой интерес представляет использование алюминийорганических соединений для синтеза алкильных производных других элементов ртути [128—131], кадмия [132, 133, 136], бора [105, 106, 128, 137—143, 204], кремния [144—149], олова 1128, 130, 155, 156], свинца 1108—114, 130, 157—162], фосфора [128, 153, 167, 168], мышьяка [128, 130, 155, 156], сурьмы [128, 130, 155, 156, 169], вис.мута [130, 155, 156]. [c.246]

    С электролитом указанного состава был проведен синтез алкильных производных олова, цинка, сурьмы, индия, магния [74—77], кремния и германия [78[ (табл. 8). Любопытно отметить, что попытка провести синтез германийорганических соединений на аноде из монокристалла германия не дала положительных результатов [86]. [c.225]

    Алкильные соединения некоторых других элементов, например олова, кремния, свинца, цинка, бора, мышьяка, сурьмы и висмута могут быть получены из алюмннийалкила и соединения металла в результате прямого замещения или электролитическим способом При взаимодействии с алюминийалкилом легко и быстро алкили- [c.75]

    Алкильные соединения висмута могут быть получены с помощью тех же реакций общего типа, которые были описаны для соединений мышьяка и сурьмы. Они включают реакции соединений триалкил-, триалкилэфирата или алкилгалогенида алюминия с треххлористым висмутом 2 .С помощью соединений Гриньяра могут быть получены винильные производные висмута В двух обзорах описываются синтез и свойства висмуторганических соединений Алкильные соединения висмута значительно менее стабильны, чем аналогичные соединения мышьяка и сурьмы трнэтилвисмут [c.139]

    Важной группой методов синтеза ароматических соединений ртути является замена на ртуть кислотных остатков борной—валкилборных кислотах, сернистой—в сульфиновых кислотах, йодноватой—в иодосоединениях и карбо-1ссила—в карбоновых кислотах реакции эти, имеющие главную область применения в ароматическом ряду, в случае остатков СООН, В(ОН) , ЗОзН приложены и к синтезу соединений ртути предельного ряда. Замена иа ртуть атомов тяжелых металлов—олова, свинца, висмута, таллия, кадмия, трех-валеитных сурьмы и мышьяка—в их арильных (частью и в алкильных) соединениях также люжет служить для це.тей синтеза ароматических и жирных соединений ртути. [c.83]

    Коханенко [14а] предложил новый метод обнаружения свободных радикалов при каталитическом разложении ацетона. Прежде единственным прямым способом обнаружения свободных радикалов был способ Паннета, который основан на способности свободных радикалов реагировать с металлическими пленками и дать летучие алкилметаллы. Для этой цели на стенке трубки на некотс -ром расстоянии от нагреваемой части ее, в которой производят разложение углеводорода, готовят металлическое зеркало (из свинца, цинка, олова или сурьмы). Продукты разложения углеводорода в вакууме, содержащие свс-бодные радикалы, проходя над металлическим зеркалом, реагируют с ним, давая летучие алкильные соединения металлов, при этом можно проследить, как зеркало постепенно исчезает. Это исследование с зеркалом считается прямым доказательством присутствия свободных радикалов. Но в этом способе есть некоторые неудобства, например трудность контроля структуры металлического зеркала (некоторые части можно легче удалить, чем другие) и загрязнения поверхности смолистыми веществами, возникающими в процессе реакции. Незначительные следы кислорода могут в результате окисления совершенно остановить снятие зеркал (кислород может индуцировать образование смолистых веществ на поверхности зеркала). [c.567]


    Важной группой методов синтеза ароматических соединений ртути является замена на ртуть остатков кислот борной в арил(алкил)борных кислотах, сернистой в сульфиновых кислотах, йодноватой в иодосоедине-ниях и карбоксила в карбоновых. кислотах. Реакции эти, имеющие главную область применения в ароматическом ряду, в случае остатков СООН, В(0Н)2, SOgH применимы и к синтезу алифатических соединений ртути. Замена на ртуть атомов тяжелых металлов — олова, свинца, висмута, таллия, кадмия, кремния, трехвалентных сурьмы и мышьяка — в их арильных (частью в алкильных и алкенильных) соединениях также может служить для целей синтеза ароматических и жирных (предельных и непредельных) соединений ртути. [c.197]

    Галогейы реагируют с пентаметилпроизводными мышьяка и сурьмы с разрывом связей С—"Аз и С—5Ь, вероятно, опять по гете-ролитичеркому механизму [170]. В противоположность алкильным соединениям мышьяка и сурьмы триалкилвисмутины реагируют энергично с галогенами при этом расщепляется связь С—В1 и алкильная группа замещается на атом галогена [160]  [c.161]

    Приведены основные положения разработанных химико-спектральных методик алкильных соединений цинка, галлия, индия, олова, сурьмы, мышьяка, селена, теллура и алкоксильных соединений кремния, алюминия, тантала на ряд микропримесей. [c.275]

    Определение коэффициентов разделения в системе МОС — нримесь, для органических соединений галлия и мышьяка, проведенное в работах [6—8], показало, что при ректификации наиболее трудно отделимыми от эфирата триметилгаллия примесями являются алкильные соединения кадмия, олова, свинца, сурьмы, висмута, а от триметилгаллия, кроме того, и иодистый метил. Ректификационная очистка триметиларсина лимитируется примесями кремния, селена, теллура и иодистого метила. Проведенная ректификация органических соединений галлия [3, 4, 6, 8] [c.102]

    Для определения примесей в алкильных соединениях индия, галлия, сурьмы, олова, кадмия и цинка их переводили в окиси, которые и подвергали спектральному анализу. Алкильные соединения цинка энергично взаимодействуют с кислородом воздуха и водой. Гидролиз сопровождается появлением пламени даже при сильном охлаждении и в атмосфере азота, что неудобно при проведении рутинных анализов. Поэтому диэтилцинк разлагали в две стадии сначала спиртом с переводом алкильного соединения в ал-коксид, который в свою очередь разлагали затем азотной кислотой. Обе реакции протекают достаточно спокойно [12]. Остальные из [c.244]

    При определении примесей в диэтилселене его обрабатывали азотной кислотой и удаляли селен отгонкой при 320°С. Алкильные соединения селена и теллура окисляются концентрированной азотной кислотой, так же как и соединения сурьмы или мышьяка, без замещения алкильных радикалов. В случае диэтилтеллура радикалы замещаются лишь при упаривании азотнокислого раствора досуха. Свидетельствует о замещении вспышка, происходящая в конце упаривания. Азотнокислый раствор селена упаривается без вспышки. Отгонка селена также происходит без вспышки. Так как алкильные соединения селена стабильнее соединений теллура то, по-видимому, можно полагать, что селен отгоняется в вид (СНз)23е(КОз)2 или (СНз)23еО. [c.246]

    Кольбе вновь обратился к теории радикалов Берцелиуса и пытался обосновать ее на основе новых открытий. Он хотел, чтобы теоретические представления отражали свойства реальных веществ. Кольбе трудился упорно, сопоставляя свои- идеи с результатами новых исследований. Очень важными для него оказались работы Франкленда, посвященные исследованию состава и свойств органических соединений азота, фосфора, мышьяка и сурьмы, а также металлоорганических соединений . В работе Об естественной связи между органическими и неорганическими соединениями (1860 г.) Кольбе писал Химические органические тела всегда являются продолжением неорганических соединений и возникают из последних непосредственно путем изумительно простого процесса замещения [82]. Таким образом, Кольбе пытался рассматривать органические соединения как производные неорганических. При этом угольную кислоту ученый считал основным исходным веществом — типом органических кислот. Из нее путем замещения кислорода на водород или алкильный остаток получались спирты, карбоновые кислоты, альдегиды и углеводороды. Многоосновные кислоты, как и многоатомные спирты, Кольбе получал таким образом соответственно из двух или трех молекул угольной кислоты. Подобным же образом как производные неорганических веществ Кольбе рассматривал сульфокислоты, сульфоны, фосфорные и мышьяковые кислоты, амины, амиды и металлоорганические соединения. Пользуясь этой теорией, он пытался не только объяснить известные факты, но и предсказывать новые. Кольбе писал Нам кажется, что подобным же образом и в спиртах происходит замещение одного или двух атомов водорода на равное число метильных, этильных или других замещающих групп и в результате образуется новый ряд спиртов... И хотя до сих пор ни один из этих спиртов еще не получен, все равно я совершенно твердо убежден, что [c.59]

    Эффективными сокатализаторами оказьгеаются также другие алкильные и арильные производные свинца, используемые в сочетании с галогенидами титана, циркония и гафния или с комплексными солями этих галогенидов и галогенидов щелочных металлов и аммония, например с фтор-титанатом калия, хлортитанатом аммония и фторцирконатом цезия [231]. Активность каталитических систем, содержащих органические соединения свинца и галогениды титана или других металлов IV—VI групп, возрастает при добавлении галогенидов металлов II или 1П групп, например хлористого алюминия, хлористого галлия, хлористого магния, бромистого цинка, фтористого таллия, трехфтористого бора, хлористой сурьмы [214, 256, 257]. [c.109]

    Существует ясно выраженное различие между фторалкильными соединениями фосфора, мышьяка и сурьмы и их алкильными или арильными аналогами. Так, они более легко подвергаются гидролизу, выделяя в большинстве случаев СРзН. Кроме того, донорные свойства атома металлоида значительно снижены присутствием фторалкильной группы, и аддитивные соединения с атомами-акцепторами, хорошо известные для алкильного и арильного ряда, в данном случае или очень не устойчивы или совсем не образуются. Можно заметить, что о производных висмута не упоминалось. Эта проблема еще не рассматривалась нами, но можно сказать, что, поскольку наблюдается уменьшение термической устойчивости фторалкильных соединений при переходе от фосфора к сурьме, маловероятно, чтобы соединения висмута можно было получить путем непосредственной реакции F3J с висмутом по-видимому, будет более оправдан другой путь синтеза. [c.86]

    Из алкильных производных сурьмы легче всего получаются третичные стибины при взаимодействии магнийорганических соединений с треххлористой сурьмой  [c.315]

    Общий характер химических свойств галогенидов, гидридов, алкильных и арильных производных азота, фосфора, мышьяка и сурьмы в значительной степени объясняется донорными свойствами центральных атомов этих соединений. С этой точки зрения уместно будет рассмотреть влияние одной или более трифторметильных групп на основные свойства этих соединений. Несомненно, введение вместо алкильной трифторметильной группы мало влияет на гибридизацию центрального атома, так как исследование дифракции электронов показало, что углы связей С—М—С в трис (трифторметил) фосфине, три(трифтор- [c.54]

    Гидриды и алкильные производные элементов V группы являются основаниями Льюиса это вытекает из 1) их способности присоединять протон или какую-либо алкильную группу с образованием ониевой соли 2) стабильности аддуктов, которые они образуют с акцепторными молекулами, например галогенидами бора, и 3) лёгкости образования и устойчивости комплексов с галогенидами переходных металлов, например с хлоридом платины (II). Можно было бы рассмотреть и другие свойства, однако достаточные сведения имеются лишь относительно перфторалкильных производных. Что касается гидридов и их алкильных производных, то существуют достаточно полные сведения показывающие, что стабильность их ониевых солей и молекулярных соединений быстро уменьшается в зависимости от природы центрального атома в следующем порядке N > Р > Аз > ЗЬ. Таков порядок и в случае а-связей, если же есть еще и я-связь, то порядок, очевидно несколько иной N < Р > Аз > 5Ь. Галогениды азота, фосфора, мышьяка и сурьмы, разумеется, не образуют ониевых солей. Действительно, чем ниже в группе расположен элемент, тем сильнее его кислоты Льюиса и тем выше их способность образовывать анионы типа 5ЬС1б. Однако некоторые галогениды могут давать аддукты с сильными акцепторами (например, РзР ВНз) известно также значительное количество их комплексов с переходными металлами, например никелем и платиной. Это означает, что замена алкильных групп или водорода электроотрицательными атомами галогенов сильно уменьшает донорные свойства элементов V группы, к которым они присоединены. В то же время ослабление координационной а-связи до некоторой степени может возмещаться большей способностью к образованию п-связей там, где это возможно, так как под влиянием электроотрицательных галогенов электроны будут оттягиваться к атому элемента V группы. Это подтверждается тем, что в противоположность устойчивому (РзР)2Р1С12 соединение РзР-ВРз не существует. Следовательно, можно заранее предсказать, что перфторалкильная группа с ее высокой электроотрицательностью также должна значительно уменьшать донорные свойства элементов [c.55]

    Способность к самопроизвольному воспламенению. Многие металлоорганические соединения самопроизвольно воспламеняются на воздухе это наблюдается, в частности, у низших ал кильных производных электроноакцепторных элементов III группы (В, А1, Оа, 1п, Т1) и II группы (Ве, Mg, Zn, d), у соединений щелочных и щелочноземельных металлов I и II групп (Ы, Ма, К, НЬ, Сз, Са, 5г, Ва), а также у производных некоторых электронодонорных элементов V группы (Р, Аз, 5Ь, В1). Известно, что многие другие металлалкилы также легко окисляются под действием воздуха, но они могут при этом и не воспламеняться. Склонность к самовоспламенению (которое является по существу следствием быстрой экзотермической реакции с кис лородом воздуха, катализируемой, возможно, парами воды) значительно снижается у высших алкильных и арильных производных. Например, триарильные производные мышьяка, сурьмы и висмута устойчивы на воздухе, тогда как их триметильные соединения самопроизвольно воспламеняются. [c.26]

    Первые данные о ее возникновении относятся к тому времени, которое характерно появлением общего интереса химиков к металлоорганпческим соединениям. После открытия цннкэти. ш, в 1850 г. Левиг и Швейцер получили алкильные соедннения сурьмы в 1851 г. Ландольт полу- [c.152]


Смотреть страницы где упоминается термин Сурьма III алкильные соединения: [c.136]    [c.150]    [c.255]    [c.86]    [c.246]    [c.229]    [c.78]    [c.189]    [c.17]    [c.154]    [c.136]    [c.80]    [c.151]    [c.154]    [c.287]    [c.260]    [c.209]   
Неорганическая химия Том 1 (1971) -- [ c.495 , c.496 ]




ПОИСК





Смотрите так же термины и статьи:

Соединения алкильные

Сурьма соединення

Сурьмы соединения



© 2025 chem21.info Реклама на сайте