Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт физические свойства

    Физические свойства кобальта [c.311]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]


    Физические свойства карбонилов и гидрокарбонилов никеля, железа и кобальта [c.528]

    В 1913 г. существовали три пары элементов, которые по своим химическим и физическим свойствам не могли быть помещены в ряд в порядке увеличения атомных весов. Это были аргон и калий, кобальт и никель, теллур и иод. С помош,ью рентгеновских спектров было установлено, что хотя они и нарушают общий но-рядок расположения элементов по возрастанию атомных весов, [c.94]

    Физические свойства. По внешнему виду кобальт похож на железо это — блестящий металл серого цвета плотность его 8,83, температура плавления несколько ниже, чем у железа. Кипит кобальт при очень высокой температуре. Кобальт хорошо полируется, ковок и тягуч. Он тверже стали. [c.368]

    Физические свойства. По внешнему виду никель — серебристо-белый, обладающий сильным блеском металл, плотность его 8,9. Его температура плавления ниже, чем у железа и кобальта. Никель поддается ковке и сварке, хорошо полируется. Он очень тягуч, легко вытягивается в проволоку. Его электропроводность и теплопроводность приблизительно в 7 раз ниже, чем у серебра. Никель ферромагнитен, но в меньшей степени, чем железо. Сплошной кусок никеля мало растворяет водород, но очень измельченный никель поглощает огромное его количество. Как палладий и платина, никель обычно образует гранецентрированную кубическую решетку. Однако Бредиг в 1927 г. обнаружил у никеля, катодно распыленного в атмосфере водорода, решетку типа магния (гексагональная, с плотной упаковкой), т. е. того же строения, которое обычно имеет кобальт. [c.384]

    Химические и физические свойства кобальта и никеля [c.215]

    Никель и его соединения. Никель — серебристо-белый, очень твердый металл, который хорошо куется и полируется, притягивается магнитом. По многим физическим свойствам никель сходен с кобальтом. Плотность его 8900 кг/м температура плавления 1455 С. Атомная масса никеля на 0,23 а. е. м. меньше, чем у кобальта. [c.489]

    Интересно отметить, что хром в металлическом состоянии имеет металлическую валентность 6, соответствующую степени окисления + 6, характерной для хроматов и бихроматов, а не более низкой степени окисления -ЬЗ, характерной для солей хрома металлы марганец,, железо, кобальт и никель тоже имеют металлическую валентность 6, хотя почти все эти элементы образуют соединения со степенями окисления + 2 и -ЬЗ. Ценные физические свойства переходных металлов обусловлены высокой металлической валентностью этих элементов. [c.494]

    Имеется девять устойчивых орбиталей, доступных для переходных элементов (одна 4s, три 4р, пять 3d), а учитывая, что одна орбиталь должна служить металлической орбиталью, можно ожидать дальнейшего увеличения металлической валентности до значения 7 для марганца и 8 для железа. Однако, как уже упоминалось, физические свойства показывают, что металлическая валентность сохраняет свое максимальное значение 6 для марганца, железа, кобальта и никеля, а затем, начиная с меди, снижается. Максимальное значение 6 соответствует числу орбиталей связи, которые могут быть образованы путем гибридизации s-, р- и d-орбиталей. Начинающееся с меди уменьшение металлической валентности обусловлено ограниченным числом орбиталей, как показано на примере с оловом. [c.496]


    Некоторые физические свойства железа, кобальта и никеля [c.545]

    Описывается метод получения перфторуглеводородов с температурами кипения, лежащими в пределах от 180 о, 35() С при 760 мм Hg, посредством фторирования, углеводородных масел в паровой фазе над трехфтористым кобальтом. Рассматривается используемое оборудование, факторы, влияющие на величины вы хода, методы завершения фторирования и некоторые физические свойства перфторуглеводородов. [c.11]

    Изомеры положения в алкенах достаточно сложного строения обычно значительно различаются по термодинамической устойчивости. В кинетически контролируемых реакциях часто образуются термодинамически неустойчивые изомеры алкенов. Их последующая изомеризация под действием катализаторов на основе переходных металлов во многих случаях является удобным способом получения термодинамически устойчивых изомеров. Внутренние линейные алкены термодинамически более выгодны, чем терминальные, однако различие в термодинамической стабильности невелико и каталитическая изомеризация приводит к смеси изомеров. В принципе можно непрерывно удалять один из изомеров из смесн взаимопревращающихся алкенов, однако различие в физических свойствах изомеров как правило не настолько велико, чтобы их разделение можно было осуществить на практике. Однако в некоторых случаях разделение можно осуществить селективным связыванием одного из изомеров в виде производного , что выводит его из равновесной смеси и сдвигает реакцию в сторону образования производного этого изомера. Так, в промышленном катализируемом кобальтом гидроформилировании внутренних алкенов образуется значительное количество линейных альдегидов [схема (5.1)] [1]. [c.172]

    Большая твердость осмия (0,7 по шкале Мооса), пожалуй, то из его физических свойств, которое используют наиболее широко. Осмий вводят в состав твердых сплавов, обладающих наивысшей износостойкостью. У дорогих авторучек напайку на кончик пера делают из сплавов осмия с другими платиновыми металлами или с вольфрамом и кобальтом. Из подобных же сплавов делают небольшие детали точных измерительных приборов, подверженные износу. Небольшие — потому что осмий мало распространен (5-10 % веса земной коры), рассеян и дорог. Этим же объясняется ограниченное применение осмия в промышленности. Он идет лишь туда, где при малых затратах металла можно получить большой эффект. Например, в химическую промышленность, которая пытается использовать осмий как катализатор. В реакциях гидрогенизации органических веществ осмиевые катализаторы даже эффективнее платиновых. [c.203]

    Содержание окрашенных примесей в природной воде характеризуют общим термином цветность воды . Этот органолептический показатель определяется путем сравнения профильтрованной либо центрифугированной анализируемой воды с эталонными растворами в цилиндрах Несслера или Генера. По ГОСТу 3351—46 Вода хозяйственно-питьевая. Методы определения физических свойств в качестве эталона применяется платинокобальтовый раствор (1,245 г хлорплатината калия, 1,01 г кристаллического хлористого кобальта и 100 мл концентрированной соляной кислоты в 1 л раствора) или его имитация — бихромат-кобальтовый раствор (0,0875 г двухромовокислого калия, 2000 г кристаллического сернокислого кобальта и 1 мл серной кислоты, плотность 1,844 г см в 1 л раствора). Эталонные растворы такой концентрации соответствуют 500 град, цветности менее окрашенные эталоны приготовляются разбавлением исходного раст- [c.40]

    Изучите физические свойства вещества, форму, величину и цвет кристаллов (или частиц). С помощью лупы можно заметить не только неоднородность смеси, но даже установить число компонентов в ней. Наличие в образце зеленых кристаллов позволяет предположить присутствие солей железа (П) и никеля (1П), синих — меди (П), розовых — марганца (П) или кобальта (П). [c.154]

    Гидрирование циклогексена и других простых олефинов, катализируемое карбоксилатами элементов первого переходного периода от скандия(III) до цинка(И), было подробно изучено Тулуповым [5, 146]. Реакции проводились в этаноле при 20— —60 °С и давлениях вплоть до 100 атм. Скорость гидрирования очень мала и зависит только от давления водорода. Вода отравляет катализаторы. Наблюдаемый порядок активности металлов таков железо(III) > кобальт(II) > никель(П). Общий механизм, предложенный для всех катализаторов (от d°- до -конфигураций), приведен на схеме 5 [146]. Этот предполагаемый механизм, основанный на широком изучении физических свойств, резко отличается от обычных механизмов гидрирования, представляющих собой различные комбинации реакций (1)—(13) (разд. 2). В растворе карбоксилаты образуют димеры, имеющие квазиароматическую структуру. Получающаяся циклическая система реагирует с олефинами, давая соединение, в котором молекула олефина связана с двумя атомами металла. Этот тип связи сходен с одним из способов присоединения олефинов и ацетиленов к металлическим центрам на поверхностях гетерогенных катализаторов. [c.62]


    Если у последовательно перекачиваемых нефтепродуктов плотности существенно отличаются, то для контроля применяют плотномеры. Зная плотности исходных нефтепродуктов и смеси, по формулам (134) и (135) можно определить их концентрации. Непрерывное определение плотности в потоке осуществляется специальными приборами [76]. Радиоактивные методы контроля заключаются либо в измерении плотности гамма-плотномерами, либо в применении трассеров или меченых атомов . В основу метода измерения плотности гамма-плотномерами положено физическое свойство поглощения гамма-квантов жидкостью. Пропуск через измеряемую среду пучка гамма-квантов заданной интенсивности и измерение их интенсивности на выходе дает возможность определять концентрацию смеси. В промышленных условиях в гамма-плотномерах применяют радиоизотопы кобальта Со и цезия Сз , а приемниками излучения служат сцинтилляционные и газоразрядные счетчики (Гейгера—Мюллера). Гамма-плотномеры позволяют монтировать все устройство на трубопроводе без нарушения его целостности и измерять плотность в пределах 0,7—0,9 т/м . Они применяются в основном для контроля нефтепродуктов, значительно отличающихся по плотности. [c.180]

    В 1913 г. существовали три пары элементов, которые по своим химическим и физическим свойствам не могли быть помещены в ряд в порядке увеличения атомных весов. Зто были аргон и калий, кобальт и никель, теллур и иод. С помощью рентгеновских спектров было установлено, что хотя они и нарушают общий порядок расположения элементов по возрастанию атомных весов, но расположены правильно в отношении порядкового номера. Это показало, что порядковый номер имеет большее значение, 90 [c.90]

    Сочетание экстракции с методом атомной абсорбции позволяет снизить Сн определяемого элемента. Так, при определении микроэлементов (железо, кобальт, никель, цинк, свинец и медь) в морской воде для их концентрирования использовали смесь органических реагентов и органических растворителей. Подача в пламя раствора анализируемых элементов в органическом растворителе дает возможность снизить С в 3—5 раз. Благодаря отделению (в процессе экстракции) определяемых элементов от основных компонентов матрицы (воды) устраняются многие помехи на последующих стадиях анализа, в том числе помехи, связанные с физическими свойствами раствора из-за присутствия большого количества солей. [c.241]

    Радиационные дефекты влияют на такие физические свойства кристаллов, как ионная проводимость, плотность, твердость, оптические параметры и т. д. [2, гл. 8]. Так, ионная проводимость о хлористого калия при экспозиционной дозе 6-10 р от у-излучения кобальта-60 уменьшается на порядок, и наоборот, облучение потоком быстрых нейтронов 3 101 нейтрон/см ведет к увеличению ионной проводимости на два порядка. В первом случае, нагревая образец до 240° С, можно почти целиком отжечь нарушения, вызванные у-облучением, что восстановит прежнее значение электропроводности. Рентгеновское излучение снижает плотность щелочно-галоидных кристаллов, что указывает на появление дефектов решетки. Под действием тяжелых частиц наблюдалось растяжение решетки кристалла. Протонная и электронная бомбардировка хлористого калия ведет к заметному увеличению твердости, а у фтористого лития повышаются механические напряжения в поле нейтронного облучения. [c.357]

    Среди других металлоорганических соединений высокими антидетонационными свойствами обладают некоторые соединения, содержащие железо, медь, кобальт, хром, калий, теллур, таллий и др. Наиболее исследованы в качестве антидетонаторов соединения железа и меди пентакарбонил железа (ПКЖ), дициклонентадиенил железа (ферроцен) и внутрикомплексные солн меди. Физические свойства железоорганических антидетонаторов приведены в табл. 5. 36. [c.306]

    Периодический закон Д. И. Менделеева был общепризнан, хотя имелись и некоторые аномалии. Так, согласно периодическому закону, свойства элементов находятся в периодической зависимости от их атомных весов, и поэтому не может быть двух элементов с одинаковым атомным весом и разными химическими и физическими свойствами. Однако это наблюдается у кобальта и никеля порядок расположения по возрастающему атомному весу нарушен для теллура и иода. Д. И. Менделеев предполагал, что атомный вес теллура не верен, но это не подтвердилось, и теллур должен быть помещен в периодической системе до иода, хотя у него атомный вес больше. Кроме того, было неясно положение в периодической системе VIII группы и редкоземельных элементов, а также не нашлось места для инертных газов, открытых в самом конце XIX века. [c.91]

    Физические свойства. Железо, кобальт и никель характеризуются наличием ряда полиморфных видоизменений. Полиморфные превращения железа, отчасти кобальта и никеля, имеют очень большое значение в машиностроении, так как они обусловливают структуру и свойства сплавов. Полиморфные превращения железа а-Ре при 768 С теряет свои магнитные свойства ( -превращение), при 910°С переходит в у-Ре при 140РС переходит вб-Ре и при 1539 С плавится. [c.126]

    Синтезированы циклические карбонаты на основе оксидов а-олефинов С з-Си, оксида октадиена-1,7 в присутствии каталитической системы хлорид кобальта-диметилформамид определены их физические свойства, получены опытные образцы. Исследован процесс сульфироваиия масляных дистиллятов с целью получения белых масел и сульфонатных присадок. Показана возможность замены олеума в процессе кислотной очистки самым сильным сульфирующим агентом - триоксидом серы. Эго позволило значительно сократить расход сульфирующего агента, продолжительность ведения процесса, а также существенно уменьшить образование кислого гудрона. Показано, что каталитическая система хлорид кобальта - димегилформамид является эффективной для широкого ряда эпоксисоединений. [c.64]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Выделен ряд новых аддуктов соль — разбавитель, изучена их структура и физические свойства.Описаны аддукты уранилнитрата [176], хлорида кобальта [193], хлорида марганца [195], хлорида бериллия [194] и хлорида алюминия [196, 197]. Некоторые хлориды редкоземельных элементов образуют аддукты 1 1 с эфирами дикарбоновых кислот [198] диметилсульфоксид образует твердые сольваты с галоидами тория и урана (IV) [199]. [c.41]

    ПГП, , ДОА в воздухе рабочих помещений в зависимости от химических соединений и ядерно-физических свойств радионуклида кобальта, МЗУА и МЗА этого нуклида на рабочем месте [2] [c.272]

    Окисление аммиака температура 600°, 61% конверсии аммиака 90% окислов азота получается при скоростях выше 1600 мл мин Ри 0° Гель кремнекислоты, полученный осаиадением 10% соляной кислотой из жидкого стекла с одновременным добавлением окиси хрома введение алюминия в комплекс повышает качество катализатора добавление кобальта (5,5—6%) в виде азотнокислого кобальта улучшает физические свойства катализатора, его твердость, а также выход 10 [c.161]

    Физические свойства карбонилов и гидрокарбопилов железа, кобальта п никеля приведены в табл. 7. [c.105]

    Физические свойства солей различны. Есть соли легко и трудно растворимые и практически нерастворимые в воде. Некоторые соли образуют кристаллогидраты, другие—нет. Есть окрашенные соли, папример соли меди— синего, никеля—зеленого, кобальта—розового цвета. Типичные примеры солей поваренная соль Na l, селитра NaNOg и т. д. Все соли—вещества твердые, способные кристаллизоваться. Водные растворы солей хорошо проводят электрический ток. Класс солей можно подразделить иа три группы  [c.114]

    Частичным подтверждением такого предположения служит наблюдаемое резкое изменение физических свойств осадка гидрата закиси кобальта при его осаждении из раствора нитрата кобальта, содержащего свыще 1 % примеси ионов сульфата по отнощению к Со(N03)2 6Н2О. [c.121]

    Это соединение первоначально было получено Руффом Перкинс и Ирвин получили пятифтористую сурьму прибавлением АНР к пятихлористой сурьме в алюминиевом сосуде при 10—35° С, а в конце 50° С. Сырую пятифтористую сурьму очищали перегонкой. Шер и Шуриг о получили этим же методом очень чистые образцы для определения физических свойств. Детальное исследование этой реакции описано недавно Пятифтористая сурьма является мощным фторирующим агентом. Она применяется для полной замены атомов галогена на фтор в вы-сокофторированных соединениях. Пятифтористая сурьма, как и ряд других фторирующих агентов, например трехфтористый кобальт, фторное серебро, четырехфтористый свинец, способна насыщать двойные связи фтором. Применению с этой целью пятифтористой сурьмы посвящен ряд статей двойные связи могут насыщаться не только в олефинах с открытой цепью или цик-лоолефинах но и в ароматических системах 2 3 370.375,37  [c.95]

    Структура. Положение и характер связи водородных атомов в карбонплгидрндах является наиболее загадочным в их структуре. Первоначально думали, что водород может быть так тесно связан с металлом, что СоН и РеНг будут вести себя как псев-доникелевые атомы [И, 25]. Позднее, когда методом электронной дифракции нашли, что металл сохраняет тетрагональную координацию повсюду в сериях [N (00)4], [СоН (СО) 4] и [РеНг(С0)4] (очевидно, без какого-либо искажения при введении водородных атомов), было высказано предположение, что водородные атомы связаны с кислородными как в [Со(СОН) (СО)з] [26—28]. Считали, что это также должно объяснить кислотные свойства, хотя трудно согласуется с очень низкой растворимостью гидридов в воде. Оказывается, что отношение между карбонилгидридом кобальта и карбонилом никеля такое же, как между карбонилгидридом марганца и карбонилом железа, поскольку у этих двух соединений почти идентичные физические свойства [14] (табл. 6). [c.205]


Смотреть страницы где упоминается термин Кобальт физические свойства: [c.102]    [c.355]    [c.403]    [c.438]    [c.262]    [c.248]    [c.270]    [c.148]    [c.438]   
Неорганическая химия Том 2 (1972) -- [ c.474 , c.477 , c.547 , c.548 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт, свойства



© 2025 chem21.info Реклама на сайте