Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкил термодинамическая

    Термодинамически наиболее выгодны следующие реакции распад циклоалканов до элементов дегидрирование циклопентана до циклопентаднена и дегидрирование циклогексанов до аренов. Фактически при термическом разложении циклоалканов образуются низшие алкены (С2—Сз), метан, этан, бутилен, водород, циклонентадиеиы и арены. [c.228]

    Превращения аренов. Термическая устойчивость аренов сильно изменяется в зависимости от строения. Незамещенные и метилзамещенные бензол и нафталины значительно более устойчивы, чем алканы. Термодинамически возможен распад незамещенных аренов до элементов, а при очень высокой температуре — раскрытие аренового кольца. Однако, исключая электрокрекинг, который протекает при очень высокой температуре, незамещенные арены подвергаются практически только дегидроконденсации. Алкилзамещенные арены, имеющие связь С—С, сопряженную с кольцом, разлагаются быстрее алканов. Это объясняется распределением энергии между связями в молекуле (ем. раздел 12.1). Основным направлением превращения алкил-ареновых углеводородов является крекинг алкановых цепей и деалкилирование. [c.314]


    Изомеры положения в алкенах достаточно сложного строения обычно значительно различаются по термодинамической устойчивости. В кинетически контролируемых реакциях часто образуются термодинамически неустойчивые изомеры алкенов. Их последующая изомеризация под действием катализаторов на основе переходных металлов во многих случаях является удобным способом получения термодинамически устойчивых изомеров. Внутренние линейные алкены термодинамически более выгодны, чем терминальные, однако различие в термодинамической стабильности невелико и каталитическая изомеризация приводит к смеси изомеров. В принципе можно непрерывно удалять один из изомеров из смесн взаимопревращающихся алкенов, однако различие в физических свойствах изомеров как правило не настолько велико, чтобы их разделение можно было осуществить на практике. Однако в некоторых случаях разделение можно осуществить селективным связыванием одного из изомеров в виде производного , что выводит его из равновесной смеси и сдвигает реакцию в сторону образования производного этого изомера. Так, в промышленном катализируемом кобальтом гидроформилировании внутренних алкенов образуется значительное количество линейных альдегидов [схема (5.1)] [1]. [c.172]

    Крекинг алканов. Алканы термодинамически неустойчивы относитель- [c.30]

    Реакция, катализированная галоидами металлов, обратима и является реакцией первого порядка. Состав продуктов реакции ограничивается термодинамическим равновесием процентное содержание парафинов с возрастанием температуры уменьшается. Безводный хлористый алюминий наиболее эффективно применяется для изомеризации н-бутана в изобутап. Этот катализатор, так же как и бромистый алюминий и фтористый бор, необходимо активировать при помощи галоид-водорода или веществами, способными в условиях реакции давать до начала изомеризации галоид-водород [397—399]. К другим активирующим агентам относятся нагрев [400], вода [397], кислород [400, 401], олефины и алкил-галоиды. [c.116]

    Как видно, скорость гидроформилирования термодинамически менее стабильных алкенов (2-метилбутен-1 и З-метилбутен-1) больше, чем более стабильного (2-метилбутен-2) алкена. [c.220]

    Если изомеризация алкена проводится в жидкой фазе, рассмотренный метод расчета должен быть дополнен анализом равновесия между жидкой и газовой фазами. Простым приемом, позволяющим перейти от равновесия в газовой фазе к равновесию в жидкой фазе, является следующий. Предположим, что изомеризация в газовой фазе доведена до равновесия. Тогда находящаяся в равновесии с этой фазой жидкость также, очевидно, будет термодинамически равновесной. Поскольку давление пара компонента над идеальным раствором связано с составом раствора законом Рауля, получаем такую зависимость равновесного парциального давления /-компонента Я, и его равновесной мольной доли в жидкой фазе уу. [c.14]


    Нужно оговорить, что в этой книге использованы равноценные термины олефины и алкены , так как первый термин традиционно применяется и удобен при описании химических и технологических процессов, а второй — при обобщении термодинамических и кинетических расчетов. Рассматриваемые в книге закономерности справедливы для различных соединений с двойной связью, однако основное внимание уделено изомеризации алициклических олефинов, имеющих наибольшее техническое значение. Это позволило рассмотреть различные типы изомеризации в книге относительно небольшого объема. [c.6]

    Для определения термодинамических параметров алкенов разумнее использовать ограниченное число справочных данных, на основе которых по определенным правилам можно было бы рассчитать характеристики алкена заданного строения. С этой целью нами на основе известных термодинамических величин [I—3] определены поправки — изменения теплоемкости ср, энтропии S , теплоты образования Aff и изобарно-изотермического потенциала (энергии Гиббса) при образовании AG для следующих изменений в молекуле олефина  [c.7]

    В табл. 1 приведены для температур 300—1000 К термодинамические параметры для бутена-1 и поправки к этим величинам при увеличении длины углеродной цепи на группу СНг. По данным таблицы можно определить термодинамические параметры любых алкенов-1. Изменение термодинамических параметров при переходе от алкенов-1 (а-олефинов) к чыс-алкенам-2 и транс-алкенам-2 (к цис- - и гранс-р-изомерам) и от алкенов-2 к алкенам-3 (цис-у-и гранс-у-изомерам) даны в табл. 2 для того же интервала температур. Пользуясь этой таблицей, можно определить термодинамические параметры различных н-алкенов с внутренней двойной связью. Изменения термодинамических параметров при скелетной изомеризации алкена-1 с появлением в боковой цепи одной или двух метильных групп приведены в табл. 3. [c.8]

Таблица 3. Изменение термодинамических параметров при изменении углеродного скелета алкена Таблица 3. <a href="/info/1492589">Изменение термодинамических параметров</a> при <a href="/info/580552">изменении углеродного скелета</a> алкена
    С ростом числа углеродных атомов в молекуле алкена резко увеличивается число его возможных изомеров. Так, если для бутенов, как уже говорилось, возможны четыре изомера, то для гексенов 20, а для гептенов 48. Поскольку в реальных ситуациях все возможные изомеры гексенов и тем более гептенов не образуются, целесообразно сравнить термодинамическую стабильность разных изомерных молекул с нормальной цепью, с одним и двумя метиль-ными радикалами и с этильным радикалом. [c.20]

    Наиболее благоприятно по термодинамическим соображениям взаимодействие СО2 с ацетиленом с образованием, алки-новой кислоты. Эта реакция термодинамически вероятна (конверсии выше 70%) как в жидкой, так и в газовой фазе. [c.349]

    В работе [77] рекомендовано для определения термодинамических функций алкенов различного строения использовать поправки, учитывающие изменение термодинамических функций при переходе от н-алкена-1 к алкену заданной структуры. Эти поправки учитывают изменения теплоемкости С°р, энтропии 5°, теплоты образования АН°об и стандартной энергии Гиббса образования газообразного алкена А0°об = —ЯТ 1п К°р об для следующих изменений в молекуле  [c.386]

    Поправки при указанных выше переходах определены путем усреднения изменений для 5—15 одинаковых переходов, осуществляемых для алкенов с разной молекулярной массой. Пользуясь этими поправками и термодинамическими параметрами бутена-1 можно определить теплоемкость, энтропию, теплоту образования и изменение изобарно-изотермического потенциала при образовании для алкена с заданным строением в широком интервале температур (300—1000 К). Подчеркнем, что характеристики бутена-1 и поправки, приводимые ниже в таблицах, даны для газообразного состояния при 0,098 МПа. [c.387]

Таблица [7.8. Термодинамические параметры бутена-1 и их изменение при увеличении числа углеродных атомов в цепи н-алкена на единицу Таблица [7.8. <a href="/info/6170">Термодинамические параметры</a> бутена-1 и их изменение при <a href="/info/1125914">увеличении числа</a> <a href="/info/487451">углеродных атомов</a> в цепи н-алкена на единицу
    Повышение давления и концентрации водорода увеличивает термодинамически возможную глубину гидрогенолиза. Гидрокрекинг идет с выделением тепла и (при температурах риформинга) с убылью стандартной энергии Гиббса. Тепловые эффекты и изменение стандартной энергии Гиббса в реакциях гидрокрекинга алкил-циклогексанов при 800 К следующие  [c.244]

    Температура проведения процесса Hii должна быть слишком низкой, так как уже при 130°С вместо полимеризации идет образование фосфорнокислых эфиров. Нельзя допускать также чрезмерного повышения температуры, так ка выше 220°С увеличивается вероятность распада полимерных карбкатионов. Кроме того, при высокой температуре интенсифицируется реакция отрыва гидрид-иона от исходного алкена, в результате чего увеличивается выход смолообразных ненасыщенных продуктов, блокирующих поверхность катализатора. Выше 270°С пс лимеризация становится термодинамически невозможной. [c.267]


    С увеличением суммы (п + т) увеличивается и число возможных направлений распада молекулы алкана. Эти направления распада алкана можно определить на основании экспериментального изучения состава его продуктов разложения или установить их расчетным путем, опираясь на термодинамические соображения и минимальное количество опытных тепловых данных (тепловой эффект ч теплоемкости веществ). [c.20]

    Sill, ii rioiiiiiiH Силаны (SIH4 и др.) и гидриды других элементов группы IVB термодинамически неустойчивы (i G° С СО) по отношению к диссоциации на элементы, окислению и гидролизу. Алканы (СН4 и др.) термодинамически устойчивы к диссоциации на элементы и к гидролизу. Хотя алканы термодинамически неустойчивы по отношению к окислению до диоксида углерода и воды, при комнатной температуре они инертны из-за большого значения энергии активации реакции окисления. [c.492]

    Бимолекулярная рекомбинация радикалов ведет не только к соединению радикалов, но часто протекает как реакция диспропорционирования, при которой происходит перераспределение водорода о образованием молекул алкана и алкена. С реакциями диспропорционирования радикалов, при которых обычно выделяется теплота, термодинамически сопряжены (в силу обратимости) реакции зарождения радикалов путем химического взаимодействия между предельной и непредельной молекулами алкана и алкена. Эта реакция, обратная процессу диспропорционирования радикалов, хотя и эндотермическая, может происходить легче, чем первичная диссоциации алкана на радикалы [65]. [c.132]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]

    Термодинамическое рассмотрение позволяет также оценить энтропии активации, но такая оценка, естественно, будет носить качественный характер. В экзотермической реакции рекомбинации энергия активированного комплекса незначительно отличается от энергии исходных частиц ( акт.рек 0)- соответствии с правилом Хэммонда структура переходного состояния должна быть подобна структуре исходных радикалов, что возможно, если велико. Рассмотренный выше механизм указывает на значительное расстояние между радикалами в активированном комплексе. Следовательно, радикальные группы в активированном комплексе слабо связаны между собой, и поэтому среди ЗМ—7-внутренних степеней свободы движений активированного комплекса могут быть внутренние вращения этих групп. Иначе говоря, при переходе от молекулы алкана при ее диссоциации на радикалы к активированному комплексу следует ожидать значительного возрастания энтропии активации. Большая положительная энтропия активации реакции диссоциации (А5д+ ,>0) указывает на то, что в этой реакции Л-фактор также будет иметь большое значение. [c.90]

    Для расчета эффективного дипольного момента, который приходится на одну молекулу алкана в газовой фазе, необходимо знать дипольные моменты всех разрешенных (термодинамически наиболее вероятных) конформеров данного алкана и их содержание в поворотно-равновесной смеси. [c.146]

    Крекинг алканов. Алканы термодинамически неустойчивы относительно распада иа водород и углерэд при следующих температурах (в К) метан з 900, этан бОО, проиаи 400, бутан 350, иентаи 320, гексан и алканы с большие числом углеродных атомов — при 300. [c.119]

    Выше было показано, что термодинамические параметры алке-аов Сб—Сго мало зависят от молекулярной массы или от темпера-уры кипения смеси. Это обосновывает при расчете превращений пожных смесей углеводородов использование так называемого ме-рда псевдокомпонентов. По этому методу термодинамические ха- ктеристики превращений смеси углеводородов рассчитывают, яьзуясь стандартными термодинамическими величинами для ин-видуальных углеводородов, представляющих исходную и ко-1ную смеси. Эти индивидуальные углеводороды ( псевдокомпо- [c.21]

    Теоретические основы. Алкилирование бензольного кольца олефинами сопровождается последовательным введением алкильных групп вплоть до гюлучения гексаметиябензолов. Деалкилирование с вьщелением алкена термодинамически возможно лишь при темпе-рат)фах выще 300 °С. [c.875]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    ИЗ 1,1-диметилциклопентана 1,2-диметилциклопентана,Г ис или из 1,1-Диметилциклогексана 1,2-диметилциклогексана,цыс теплота реакции составляет 8,7—9,1 кДж/моль, Д5° — 7,2—10,3 кДж/(моль-К), Кр — 0,3—0,4. Наблюдающиеся отдельные отклонения в этих величинах для однотипных изменений в алкил-циклопентанах и алкилциклогексанах (например, 1,2-транс—>-—>-1,3-транс-миграция заместителя) связаны с недостаточно точным определением термодинамических параметров изомеров. В этой связи следует учитывать приближенный характер приводимых ниже расчетных равновесных составов. [c.195]

    Селективное получение индивидуальных разветвленных а-олефинов может быть достигнуто при димеризации и содимеризации низкомолекулярных алкенов в присутствии щелочнометаллических катализаторов на носителях. В отличие от алюмоорганических систем эти катализаторы позволяют вовлечь в реакцию более устойчивые термодинамически р-олефины (2-алкены), которые преобладают в продуктах нефтепереработки. [c.323]

    Однако на практике реализация этого метода встретила целый ряд труд ностей. Прежде всего, при дегидрировании алканов С4—С5 существенную роль играют термодинамические ограничения (см. гл. 2), вследствие чего получить целевой диен в одну стадию с технически приемлемым выходом в обычных условиях практически невозможно, и лишь с помощью специальных приемов (применение вакуума, сопряженное или окислительное дегидрирование) выход диена может быть поднят до требуемого уровня. Второй принципиальный недостатон метода дегидрирования в любом его варианте — это сложность выделения целе вого продета. При дегидрировании, как правило, образуется практически весь возможный ассортимент низкокипящих углеводородов с одинаковым числом С-атомов (алканы, алкены, алкадиены, алкины, циклические и разветвленные структуры и т. д.). [c.349]

    Прямое и селективное алкилирование парафинов бензолом уже давно привлекало исследователей [13]. Превращение низших парафинов в высококислотные катионы под действием сверхкислот открыло новые пути в решении этой задачи [14]. Были испробованы разные методы для осуществления этой крайне невыгодной в термодинамическом отношении (табл. 1) реакции [15, 16]. Напротив, гораздо меньше внимания было уделено прямому алки-лированию низших парафинов олефинами, катализируемому кислотами [6, 17], хотя эти реакции термодинамически гораздо более перспективны, особенно при низких температурах (25— 125 °С), когда отрицательные тепловые эффекты играют меньшую роль. [c.150]

    Реакциями, обратными реакциям диспропорционирования алкильных радикалов, являются реакции молекулярногодиспропорционирования алканов и алкенов с образованием алкильных радикалов, которые относятся к реакциям инициирования радикалов. Эти реакции термодинамически сопряжены с реакциями диспропорционирования радикалов и представляют реальный источник получения радикалов в условиях, когда их скорость соизмерима со скоростью реакции диспропорционирования алкильных радикалов. Эти реакции вообще еще мало изучены. Однако, располагая знанием констант скоростей реакций диспропорционирования алкильных радикалов и констант равновесия обратимых реакций диопропорционироБания, можно оценить и константы скорости реакций молекулярного диспропорционирования алкана и алкена, являющихся продуктами диспропорционирования радикалов. Поэтому прежде всего следует вычислить константы равновесия этих реакций. [c.280]

    В табл. 8.2 приведена классификация частот нормальных колебаний н-парафинов и область изменения частот. Эти данные можно использовать для оценки термодинамических функций молекул и радикалов. Рисунок, приведенный ниже, поясняет табл. 8.2 и схематически показывает строение и колебательные координаты н-парафинов. Учитывая свойство характеристичности колебаний и пользуясь данными табл. 8.2, можно получить приближенный колебательный спектр любой молекулы алкана и соответствующего ей радикала. Частоты нормальных колебаний для многих углеводородов различных классов приведены в монографии Свердлова, Ковнера и Крайнова [4 9]. [c.98]

    Таким образом, схема расчета эффективного дипольного момента индивидуальной молекулы алкана сводится к следующему. Согласно конформационной номенклатуре необходимо составить перечень всех термодинамически устойчивых конформеров исследуемого углеводорода. Определить их числа симметрии б, статистические веса П и, учитывая хиральность (в этом случае статистический вес удваивается), рассчитать значение энтропии конформационного перехода йЗ пс формуле (УП.5,10). Определить значение свободной энтальпии конформационного перехода (У11.5.9.) и по формулам (УП,5.11) рассчитать концентрации разрешенных конформеров. По методу BJVl,Taтeв-ского для каждого разрешенного конформера рассчитать значение дипольного момента и по формуле (УИ.5,7) вычислить величину Рдф. [c.148]


Смотреть страницы где упоминается термин Алкил термодинамическая: [c.105]    [c.298]    [c.248]    [c.358]    [c.388]    [c.68]    [c.203]    [c.224]    [c.79]    [c.268]    [c.211]    [c.114]   
Металлоорганические соединения переходных элементов (1972) -- [ c.282 , c.284 ]




ПОИСК







© 2025 chem21.info Реклама на сайте