Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Урана тетрафторид фторида уранила

    Прямой процесс фторирования и испарения фторидов был разработан Аргоннской национальной лабораторией для выделения урана и плутония из отработанной двуокиси урана, использовавшейся в качестве ядерного топлива для производства энергии. После удаления оболочки топливные элементы обрабатываются фтором для превращения окислов в соответствующие фториды. Уран может быть отделен от плутония за счет большей скорости фторирования тетрафторида и различия в химической активности гексафторидов. Таким путем достигается разделение урана и плутония и их высокая очистка от продуктов деления. [c.123]


    Методы гидролиза гексафторида урана. Для приготовления из гексафторида урана других соединений (не тетрафторида урана) наиболее удобно пользоваться процессом гидролиза UFe до фторида уранила и фтористоводородной кислоты [16]. В воде при 25° С растворяется 66% фторида уранила, образующего с водой комплексную соль [17]. Однако в присутствии фтористо- [c.479]

    Получаемый тетрафторид урана имеет насыпной вес, равный 1,9 г см , содержание двуокиси и фторида уранила в конечном продукте не превышает 0,5%. [c.262]

    Однако при повышении температуры до 400° и выше фреон-12 действует на фторид уранила, превращая последний в тетрафторид урана [c.275]

    Проведение опыта. Налить в бокал раствор нитрата уранила, подкислить его соляной кислотой и бросить несколько кусочков цинка. Через некоторое время желтый раствор окрашивается в зеленый цвет вследствие восстановления ионов иОг + до П +. Добавить в бокал насыщенный раствор фторида натрия. Выпадает светло-зеленый осадок гидрата тетрафторида урана. [c.126]

    В. Ф. Лукьянов [184] в разработанном ими методе также осаждают уран (IV) совместно с фосфатом тория. В. М. Звенигородская и Л. П. Рудина [157, 184] при выделении урана (IV) осаждением в виде фторида рекомендуют в тех случаях, когда отделяемое количество урана составляет менее 5 мг, осаждение проводить в присутствии кальция, фторид которого является хорошим соосадителем для фторида урана (IV). Для выделения малых количеств урана И. Е. Старик, Ф. Е. Старик и А. Н. Аполлонова [243] осаждают уран (IV) в виде тетрафторида урана (IV) совместно с тетрафторидом тория. [c.284]

    Четырехфтористый уран осаждают из водных растворов соединений и(IV) в виде гидратов (которые можно обезводить нагреванием в токе фтористого водорода при 300 °С), но лучще получать его из двуокиси урана и фтористого водорода при 550 °С. Это—гвердое нелетучее зеленое, весьма нерастворимое вещество, плавящееся при 960 °С. Оно реагирует с борогидридом алюминия, образуя летучий борогидрид урана (IV) фторид тория реагирует аналогично При нагревании в атмосфере водорода или с алюминием образуется темно-красно-фиолетовый трифторид, который нерастворим, но выделяет водород из кипящей воды при температуре выще 1000 °С он диспропорционируется на тетрафторид и металл. [c.123]

    Шестифтористый уран обычно получают прямым фторированием четырехфтористого урана, но можно приготовлять его действием фторидов галогенов на окислы урана при обычной температуре . Метод, не включающий применение элементарного фтора ни на одной сталии, заключается в окислении тетрафторида кислородом при 800 °С, причем протекает следующая реакция  [c.123]


    Осадки гидратированного тетрафторида образуются при прибавлении растворимых фторидов к растворам соли уранила, восстановленным посредством сернокислого железа (И), хлористого олова, электролитическим путем или, наконец, фотохимически в присутствии этилового спирта . Осадки обычно хлопьевидны, трудно фильтруются, что создает дополнительные затруднения при производстве продукта в крупном масштабе. [c.149]

    Электролиз можно вести также в присутствии фтор-иона в этом случае восстанавливающийся до четырехвалентного уран образует практически нерастворимый фторид, пленка которого плотно прилегает к электроду. Электролитическим восстановлением уранил-фторида до ир4 пользуются в промышленном масштабе [922] для получения чистого тетрафторида урана, служащего для получения металлического урана. [c.371]

    Металлический уран можно получить электролизом расплавленных солей при 1200— 1260° С из электролита, состоящего из фторидов магния и бария, тетрафторида урана и окиси урана [922]. Анод —графитовый тигель, катод — расплавленный уран. [c.371]

    Фториды. Трифторид UF3 может быть получен восстановлением теТрафторида водородом, алюминием или мелкодисперсным ураном при температуре около 1000° С  [c.308]

    По мере протекания реакций (11.80)-(11.82) в конденсированной фазе происходит интенсивный массообмен, обусловленный соотношениями температур плавления и плотностей получающихся продуктов. Температура плавления урана — 1133°С, плотность — 19,04 г/см температура плавления тетрафторида урана — 1036 °С, плотность составляет 6,436,95 г/см температура плавления трифторида урана — 1427°С, плотность — 8,95 г/см . Первым плавится тетрафторид урана, далее — уран, последним — трифторид урана. Из-за большого различия в плотности урана и фторидов урана происходит осаждение металла и всплывание фторидов в поверхностный слой, подвергаемый воздействию водородной плазмы, причем тетрафторид урана будет всплывать и в расплаве трифторида урана. [c.593]

    Знание свойств систем с четырехфтористым ураном имеет больщое значение и при переработке отработанного горючего способом сплавления солей. По этому способу металлическое горючее погружают, например, в плав Nap—2гг и обрабатывают фтористым водородом, причем покрытие стержней, продукты деления и сам уран превращаются во фториды, растворяющиеся в плаве. Уран выделяют из плава после превращения тетрафторида в гексафторид при действии фтора. [c.157]

    Еще об одном фториде урана неизбежен разговор при оценке роли фтора в технологии ядерного горючего. Атом урана способен образовывать с фтором несколько соединений, проявляя различные степени окисления. Известны трифторид, тетрафторид, пентафторид, гексафторид и промежуточные фториды (между тетра- и пентафторидом) урана. Возможность их образования необходимо учитывать в технологии ядерного горючего, и поэтому понятен большой интерес к ним, однако практически важным целевым продуктом, помимо гексафторида урана, является только его тетрафторид. В ядерных реакторах в качестве топлива используется диоксид урана или металлический уран, а последний получают восстановлением именно тетрафторида. Кроме того, обычно не получают сразу гексафторид, а первоначально соединения урана переводят в тетрафторид, который фторируют элементарным фтором до гексафторида. При такой технологии расход фтора снижается приблизительно втрое, что значительно удешевляет конечный продукт, так как элементный фтор-наиболее дорогой фторирующий агент. Важно и то, что технологическое оформление процесса несравненно проще при фторировании тетрафторида урана, а пе, например, его оксида. [c.111]

    Уран и плутоний могут быть выделены из отработанного топлива ядерного реактора в виде летучих фторидов. При осуществлении этого процесса необходимо свести к минимуму потери, связанные с термическим разложением гексафторида плутония при прохождении его через горячую зону. Изучение термического разложения как в статических, гак и динамических условиях показало, что скорость процесса зависит от поверхности образующегося тетрафторида плутония и от давления гексафторида. Из реактора фторирования гексафторид плутония может быть выведен путем быстрой закалки газовой струи за зоной с температурой 500° сконденсированный материал затем подвергается дистилляции или испарению в токе фтора или гелия. [c.123]

    Двуокись урана и уранил-фторид, обычно присутствующие в небольших количествах в тетрафториде урана, также реагируют с фтором, образуя гексафторид урана  [c.103]

    Католит с осадком тетрафторида урана непрерывно удаляется из ванны и направляется в отстойник. После декантации твердый ир4 ленточным транспортером-сушилкой подается в высокотемпературный дегидратор, а маточный раствор, содержащий небольшое количество урана, серную кислоту и следы НР, возвращается на стадию получения уранил-фторида. [c.496]


    Диоксид урана высокой частоты используется в атомных реакторах. Из тетрафторида урана получают металлический уран восстановлением кальцием или магнием. Разрабатываются ядерные реакторы с расплавленным топливом UFo, находящимся в смеси с фторидами лития и бериллия. [c.532]

    Металлический уран получают металлотермическим методом в реакторах тигельного типа, футерованных фторидами или окислами кальция и магния. При восстановлении небольших количеств урана используют окислы и тетрафторид урана большой насыпной плотности, так как при этом загрузка тигля увеличивается с ростом ее в п раз тепловые потери снижаются в п"- раза. [c.168]

    Сплавление металлических компонентов почти всегда необходимо проводить в вакууме или инертной атмосфере аргона или гелия. В настоящее время часто применяются тугоплавкие тигли из окислов бериллия, циркония или тория в отдельных случаях пользуются и тиглями из окиси алюминия. Для предотвращения окисления требуется создание очень хорошего вакуума. ЕсЛи один из. металлов весьма летуч, то, для сведения к минимуму потерь из-за дестил-ляции можно применять атмосферу из хорошо очищенного аргона. Лучше всего пользоваться индукционным нагревом это особенно желательно при сплавлении металлов, сильно различающихся по удельному весу, так как при этом происходит их более полное перемешивание. В случае легкоплавких металлов, например свинца или висмута, применяются электролитические процессы. Так, тетрахлорид урана растворяли в расплавленной смеси хлоридов натрия и кальция (т. пл. 750°), затем смесь подвергали электролизу в ванне со стальным катодом, покрытым слоем жидкого свинца или висмута [2]. Для получения ртутных амальгам необходимо применять очень чистый металлический уран, приготовленный разложением гидрида. Некоторые сплавы были случайно получены при одновременном восстановлении тетрафторида урана и фторидов других металлов. Но этот метод не рекомендуется для систематического изучения, так как при нем затруднительно заранее определить конечный состав и структуру сплавов. [c.148]

    Действие кислот [10, 12]. Подобно фторидам редкоземельных элементов трифторид урана довольно инертен по отношению к кислотам. Как и фториды редкоземельных элементов (и в противоположность тетрафториду), он нерастворим в оксалате аммония. Кислоты—окислители переводят его в соли уранила и таким образом растворяют его. Разбавленные соляная, серная и азотная кислоты на холоду медленно действуют на трифторид урана. Горячая азотная кислота растворяет его довольно быстро, причем выделяются окислы азота. Горячая разбавленная серная кислота также растворяет трифторид, но медленнее, чем азотная. Под действием горячей хлорной кислоты образуется прозрачный раствор перхлората уранила 002(0104)2. Полагают, что реакция между трифторидом и соляной кислотой является окислительно-восстановительной  [c.289]

    Получение тетрафторида из водных растворов. Метод получения тетрафторида из водных растворов разработан в Англии. Результаты, полученные Болтоном, послужили основанием для различных видоизменений этого метода. Фторид, хлорид или сульфат уранила восстанавливают до четырехвалентного состояния и осаждают тетрафторид урана добавлением плавиковой кислоты. В качестве исходных реагентов используют различные соединения урана и различные восстановители. [c.290]

    Химические свойства тетрафторида урана. Тетрафторид урана представляет твердое кристаллическое веш,ество зеленого цвета. Полученный при высокой температуре, он обычно бывает более темным и плотным, а также гораздо менее гигроскопичным, чем тетрафторид, полученный по методу Гроссе [40]. В химическом отношении тетрафторид урана является устойчивым, довольно неактивным соединением. По физическим свойствам он напоминает фториды других четырехвалентных элементов, особенно изоморфные с ним тетрафториды циркония, гафния и тория. Химическое различие между ними проявляется главным образом в том, что уран может существовать в целом ряде валентных состояний, в то время как цирконий, гафний и торий в соединениях с фтором исключительно четырехвалентны. [c.303]

    Четырехфтористый уран (тетрафторид урана) представляет собой кристаллическое вещество зеленого цвета, плавящееся при 960° С. Растворимость 11р4 в воде очень мала — она принимается равной 10 моль1л при 25° С. В 30%-ном (по весу) растворе плавиковой кислоты растворимость четырехфтористого-урана составляет 0,03 г 11р4 на 100 г раствора [917]. Четырехфтористый уран легко образует комплексные соединения с фторидами щелочных металлов. Состав этих соединений может быть различным, но наиболее характерны соединения типа КиРк и КгИРе, имеющие практическое значение в технологии урана. [c.364]

    Тетрафторид урана легко получается при действии фтористого водорода на и02 при 300—400°. Восстановление раствора фторида уранила хлоридом двухвалентного олова или добавление фтористоводородной кислоты к раствору тетрафторида урана также приводят к осаждению гидратированного тетрафторида урана, который, будучи высушен в соответствующих условиях, имеет состав 11Р4 2,5 Н2О. Кристаллизационная вода в этом соединений удерживается очень прочно. Тетрафторид, как гидрат, так и безводный, представляет собой нерастворимый в воде порошок зеленого цвета. При сильном нагревании на воздухе он переходит в черную окись изОд. Безводный те трафторид урана имеет моноклиническую структуру ( 1 = 12,79 0,06  [c.53]

    На этом этапе производства ядерного горючего важнейшее соединение — тетрафторид урана, из которого могут быть получены гексафторид и двуокись урана или металлический уран. Тетрафторид урана можно получать двумя принципиально различными группами способов — водными (осаждением из растворов) и сухими (гидрофторированием твердых соединений газами при повышенных температурах). При газовом методе исходным соединением служит двуокись урана, а фторирующим реагентом — безводный фтористый водород, фториды аммония или фторсодержащие углеводороды. К сухим способам производства тетрафторида урана относятся также процессы получения его термическим разложением осадка аммонийуран-пентафторида, а также разнообразные реакции одновременного термического разложения, восстановления и гидрофторирования в атмосфере фторидов аммония. [c.154]

    Для получения тетрафторнда урана, кроме фтористого водорода, могут быть использованы и другие фторирующие реагенты (фторид и бн-фторцд аммония, фреоны). Исходным продуктом для производства тетрафторида урана в этом случае служит двуокись урана, высшие окислы и некоторые другие соединения диуранат аммония, уранилнитрат, фторид уранила. [c.274]

    При новыпгении температуры аммиак диссоциирует с образованием водорода, которых восстанавливает фторид уранила до двуокиси, а последняя, взаимодействуя с образующимся фтористым водородом, превращается в тетрафторид урана. В общем виде уравнение реакции может быть написано следующим образом  [c.277]

    UOF4 Тетрафторид-оксид урана (и02)р2 Фторид уранила и(0Н)4 Гидроксид урана(IV) U02(N03)2( 6H20) Нитрат уранила [c.104]

    Аммония диуранат натрия диуранат (пироуранат натрия) триурана октаоксид урана гидрид, дикарбид, карбйд, (IV) оксид (двуокись У., уранинит — мин.), (VI) оксид (трехокись У.), (IV) фторид (тетрафторид У., четырехфтористый У.), пероксид дигидрат, (VI) фторид (гексафторид У., шестифтористый У.), (IV) хлорид (тетрахлорид У., четыреххлористый У.), (V) хлорид (пентахлорид У,, пятихлористый У.) уранила ацетат дигидрат [дигидрат оксиацетата y.(VI)], карбонат [оксикарбонат У.(У1)], нитрат дигидрат [дигидрат оксинитрата У. (VI)], сульфат тригидрат [тригидрат оксисульфата У. (VI)], фторид [оксифторид У. (VI)] [c.268]

    Тетрафторид урана может быть получен либо осаждением его растворимыми фторидами из водных растворов четырехвалентного урана, либо сухим методом, путем взаимодействия соединений урана, в частности иОг, с фторирующими агентами при повышенных температурах. Обычно UF4 получают путем фторирования фтористым водородом UO2, приготовленной восстановлением высших окислов урана водородом. Тетрафторид урана различного изотопного состава получают восстановлением UFs водородом. Электролитическим восстановлением водных растворов иона уранила в присутствии HF можно непрерывно получать UF4. Тетрафторид урана осаждается из водных растворов в виде очень устойчивого UF4 2,5F[20. Предпринимавшиеся попытки полностью извлечь гидратную влагу из тетрафторида урана простым нагреванием в токе инертного газа обычно оказывались безуспешными. Тетрафторид, получаемый этим методом, почти всегда содержит небольшие количества окиси, образовавшейся при его гидролизе. Для получения чистого безводного UF4 из осажденного гидрата необходимо обработать его при 400—500° С газообразным фтористым водородом. Безводный IJF4 требуется в производстве металлического урана и гекса-фторида урана. Холодные концентрированные минеральные кислоты слабо воздействуют на тетрафторид урана, но он растворяется в кипящей H2SO4 и в сильных кислотах, к которым добавлена борная кислота, образующая с нонами фтора комплексы ВРГ. В образовавшихся растворах уран находится в форме ионов четырехвалентного урана. Тетрафторид урана образует ряд двойных солей с фторидами металлов. Эти соли очень устойчивы и могут быть получены из солевых расплавов, содержащих UF4, или осаждены из водных растворов. [c.114]

    Общая схема плазменно-водородной технологии переработки гексафторида урана в металлический уран и безводный фторид водорода. Схема процесса и его аппаратурное оформление показаны в общем виде на рис. 11.24. Первая стадия заключается в восстановлении урана из гексафторида урана до элементного урана или до низших фторидов урана. Эта промежуточная цель достигается возбуждением электрического разряда в потоке смеси газообразного гексафторида урана с водородом при этом смесь гексафторида урана с водородом превращается в уран-фтор-водородную плазму, содержащую смесь атомов урана, водорода и фтора, молекулы фторидов урана (UF4, UF3, UF2, UF), фтора, водорода, положительно и отрицательно заряженные ионы и электроны. Если при этой операции температура плазмы составляет при атмосферном или близком к нему давлении 6000 К, основная часть урана содержится в виде атомов U, т.е. в газовой фазе имеет место полное восстановление урана. По выходе (и-Е-Н)-плазмы из зоны электрического разряда происходит интенсивная рекомбинация молекул фторидов урана, сопровождаемая мощным световым излучением и конденсацией нелетучих ири обычных условиях фрагментов молекул гексафторида урана тетрафторида и трифторида урана, а также элементного урана. Рекомбинация может приводить к образованию летучих фторидов иентафторида, и даже гексафторида урана. Закалка, т. е. быстрое и глубокое понижение температуры до уровня, на котором рекомбинация кинетически заторможена, понижает глубину и скорость рекомбинации, но радикально не меняет ситуацию. [c.591]

    Скорость реакции во всех случаях определяется второй стадией. Ско рость образования BiFg почти на порядок ниже скорости образования UFg [16, 17]. С помощью фторидов галогенов уран фторируется до UFg, а плутоний - только до нелетучего тетрафторида плутония (PuF )  [c.38]

    Извлечение из урана плутония и продуктов деления различными солями изучали Мотт [15], Эйкин и Маккензи [6], Мартин и Майлс [46] и Мартин и Хупер [47, 48]. В больщинстве случаев предпочитают тетрафторид урана, так как он легко доступен и удобен для работы. Впрочем, какая бы соль ни нримеиялась, действующим экстрагентом являются, как это по казано [50], трех валентные соли иРз или иС1з, образующиеся благодаря восстановлению расплавленным ураном. Трехфтористый уран имеет слишком высокую точку плавления (1500°) и для экстракции применяются смеси этой соли с хлоридом или фторидом бария, имеющие более низкую температуру плавления [50]. Хотя экстракция [c.207]

    IV), тетрафторид урана, четырёхфтористый уран, UF4 2. фторид урана (III), трифторид урана, трёхфтористый уран, ирз 3. фторид урана [c.715]

    Фтористый водород реагируег со многими окисями и гидроокисями с образованием воды и фторидов. Наиболее характерными в этом отношении являются соединения щелочных и щелочноземельных металлов, серебра, олова, цинка, ртути и железа. С болое термоустойчивыми окисями, например окисью алюминия, фтористый водород реагирует медленно или только при высокой температуре. С хлоридами, бромидами и иодидами этих элементов, а также таких элементов, как сурьма и мышьяк, фтористый водород реагирует весьма бурно с выделением соответствующего галоидоводорода. С цианидами НР реагирует с выделением цианистого водорода, а с фторосиликатами— с выделением тетрафторида кремния. С силикатами он дает поду и тетрафторид кремния. С окисями таких элементов, как фосфор, вольфрам, уран и сера, реакция идет с образованием оксифторидов или фторкислот. В зависимости, , от термоустойчивости исходных веществ или продуктов реакции, а также от температуры реакции фтористый водород может реагировать с веществами, содержащими отрицательные элементы или отрицательные группы. Он реагирует со всеми металлами, расположенными ниже водорода в ряду напряжений, за исключением тех, которые образуют защитные пленки из тугоплавких фторидов. К таким металлам относятся алюминий и магний и особенно железо и никель. Медь расположена в ряду напряжений ниже водорода. Поэтому в отсутствие кислорода и других окислителей фтористый водород на нее не действует, но в присутствии кислорода медь очень быстро корродируется. Некоторые сплавы, например монель-металл, прекрасно противостоят НР, но нержавеющая сталь легко корродируется. Железо и сталь по сравнению с нержавеющей сталью значительно более устойчивы. Свинец при действии фтористого водорода быстро разрушается. [c.212]


Смотреть страницы где упоминается термин Урана тетрафторид фторида уранила: [c.176]    [c.191]    [c.349]    [c.349]    [c.387]    [c.593]    [c.733]    [c.54]   
Технология производства урана (1961) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Тетрафторид



© 2025 chem21.info Реклама на сайте