Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационные комплексы с переходными металлами

    Существует ряд комплексов, образование которых сопровождаете появлением в спектре новых полос, отсутствующих у неассоциированных молекул. К таким комплексам относятся донорно-акцепторные, характеризующиеся переносом заряда от одной молекулы к другой. Этим же свойством обладают координационные комплексы переходных металлов, окраска которых обусловливается изменением симметрии иона металла под влиянием поля молекул лигандов и появлением вследствие этого запрещенных для невозбужденного иона переходов. Эти новые полосы присущи толь- [c.188]


    При анионной полимеризации концевой атом растущей цепи несет отрицательный заряд, а в качестве противоионов чаще всего выступают ионы металлов I и И групп. При этом в зависимости от природы мономера, противоиона и среды процесс полимеризации может идти либо без предварительной координации молекул мономера вблизи активного центра, либо как анионно-координационная полимеризация с образованием регулярно построенных полимеров. Часто анионная полимеризация протекает под действием координационных комплексов переходных металлов такие процессы всегда являются анионно-координационными. [c.153]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    Большинство комплексов переходных металлов — окрашенные соединения, т. е. они способны поглощать энергию в видимой области спектра. При изучении спектров поглощения этих соединений в твердом состоянии и в растворенном в различных растворителях обнаружено, что они поглощают световую энергию также и в ультрафиолетовой области. Полагают, что полоса или полосы поглощения, найденные в видимой части или в близкой ультрафиолетовой и инфракрасной областях спектра, характеризующиеся относительно низкими значениями мольных коэффициентов погашения (мало интенсивные) порядка 0,1—100, обусловлены переходами электронов центрального иона между расщепленными энергетическими уровнями, расстояние между которыми определяется силой и симметрией данного поля лиганда. Поэтому эти переходы называют <1—с1-переходами-, их слабая интенсивность вызвана, по крайней мере для свободного иона, тем, что эти электронные переходы запрещены правилами отбора. В ультрафиолетовой области полоса или иногда наблюдаемое сплошное поглощение имеют значительно большую интенсивность. Мольные коэффициенты погашения здесь обычно падают в пределах от 1000 до 10. Полагают, что в данном случае они обусловлены переходом электрона от одного компонента к другому. Как правило, это означает переход электрона от лиганда, который как основание или восстановитель, по-видимому, имеет больший избыток электронов, чем центральный ион. Такие спектры называют спектрами переноса заряда, и они характеризуют не только координационные [c.294]

    Локализованные молекулярные орбитали в координационных соединениях. На примере СН4 и других молекул было показано, как много-центровые орбитали можно преобразовать в эквивалентные локализованные молекулярные орбитали. Подобное преобразование возможно и для МО координационных соединений переходных металлов. Для октаэдрического комплекса 1Т1(Н20)б] было получено шесть запол- [c.252]

    См. также Комплексы переходных металлов. Координационные соединения. Металлоорганические соединения активация 3/997 [c.638]

    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]

    Рассмотрение ЭКВ только начато в этой книге. Дальнейшее развитие таких представлений, теоретическое и экспериментальное исследование ЭКВ — одна из наиболее актуальных задач молекулярной биофизики. Здесь особенно перспективным представляется изучение ферментов, содержащих в качестве кофакторов атомы переходных металлов. О металлоферментах коротко рассказано в 6.8. Электронные оболочки переходных металлов являются мягкими в том смысле, что для их перестройки требуются сравнительно малые энергии — речь идет о -электронах. Соответственно координационные связи, образуемые атомом переходного металла, зависят от окружающей среды. Известно явление так называемо й дисторсионной изомерии— существования комплексов переходных металлов в изомерных формах, разнящихся длинами связей и углами между связями. Конформационная перестройка белковой структуры, образующей координационную систему переходного металла, может сильно воздействовать на строение такой системы. Тем самым, в этих случаях непосредственно реализуются электронно-конформационные взаимодействия. Их Изучение требует развития соответствующих разделов квантовой химии. Научная идеология этой области та же, что в современной неорганической химии, и поэтому законно считать исследования металлоферментов, а также любых комплексов биополимеров с металлами, относящимися к бионеорганической химии. [c.609]

    Способность к изменению координационного числа и координационной ненасыщенности является одним из наиболее важных свойств комплексов переходных металлов в металлокомплексном катализе. Ю. Н. Кукушкин отмечает следующие возможные проявления изменения реакционной способности координированных молекул (лигандов)  [c.515]


    Окислительное присоединение - это реакция, в которой пр взаимодействии комплекса переходного металла с реагентом происходит увеличение степени окисления и координационного числа центрального атома на две единицы  [c.550]

    Таким образом, в двухэлектронные реакции окислительного присоединения к координационно-ненасыщенным комплексам переходных металлов склонны вступать неполярные, полярные электрофильные молекулы и молекулы с кратной связью. [c.551]

    Если состав макроциклических комплексов катионов щелочных и щелочноземельных металлов, как уже упоминалось, существенно зависит от соотношения размеров иона металла и полости макроцикла, а в случае координационных соединений -переходных металлов решающую роль нередко играет природа аниона соли, то на взаимодействие краун-эфиров с катионами лантаноидов и скандия влияют оба названных фактора. В тех случаях когда г з+/гь > 1, в присутствии слабо [c.187]

    Книга посвящена гомогенному катализу комплексами переходных металлов — проблеме, чрезвычайно важной для самих различных областей химии органической, химии координационных соединений, гетерогенного катализа, нефтехимии, химии элементоорганических соединений, биохимии и др. Рассмотрены вопросы гомогенного гидрирования олефинов и Диенов, диМеризация и со-димеризация олефинов, реакции непредельных соединений, протекающие на комплексных никелевых катализаторах. [c.4]

    Исследование изомерии позволило химикам-органикам предсказать в прошлом веке формы органических молекул аналогично существование изомерии и выяснение ее природы позволили Вернеру прочно обосновать его идеи о строении координационных соединений. Третья глава книги посвящена этому вопросу в его современном состоянии. Четвертая и пятая главы посвящены спектроскопии комплексных соединений. Спектры поглощения в видимой и ультрафиолетовой области составляют экспериментальную основу для применения теории кристаллического поля к координационной химии, а спектроскопия в целом оказалась важнейшим методом для суждения о строении. Последняя глава посвящена магнетохимии комплексных соединений, имеющей огромное значение в исследовании комплексов переходных металлов. Эта область, которая в течение ряда лет казалась установившейся, начала внезапно очень быстро развиваться. Об этом существенном развитии и идет речь в гл. 6. [c.9]

    Реакция, осуществимая с термодинамической точки зрения, может идти со скоростью, недоступной наблюдению из-за отсутствия подходящего механизма реакции. Очевидно, необходимо разобраться в факторах, определяющих такое поведение. Кинетика реакций позволяет сравнивать количественно разные реакции, и на основании систематических кинетических исследований можно судить об относительной роли различных факторов, способных влиять на скорости реакций. Эти соображения в полной мере применимы к кинетическим исследованиям реакций, в которых участвуют координационные комплексы переходных элементов, впредь называемые просто комплексами . Кинетическое поведение этих комплексов является типичным для поведения соединений большинства элементов периодической системы, поскольку, рассматривая разные комплексы, можно варьировать почти любой фактор, влияющий на скорость реакций соединения. В число этих факторов входят валентность центрального атома металла, его стереохимическая конфигурация, а также электроотрицательность, поляризуемость, а также размеры и стереохимия лигандов, координированных с центральным атомом. [c.80]

    В 1951 г. несколько химиков-теоретиков независимо друг от друга применили ТКП для объяснения спектров комплексов переходных металлов. Так как этот метод оказался удачным, то немедленно последовала целая серия исследований. Скоро выяснилось, что ТКП пригодна для полуколичественного объяснения многих известных свойств координационных соединений. [c.44]

    Следствием этой теории является вывод, что комплексы с координационным числом четыре и шесть в основном имеют соответственно тетраэдрическую и октаэдрическую конфигурации. Комплексы переходных металлов иногда отклоняются от этого правила, и это отклонение можно отнести за счет имеющихся в них -электронов. Теория кристаллического поля дает возможно наиболее простое объяснение влиянию -электронов на структуру комплексов. [c.74]

    Большое количество данных по изотопному обмену коор-динационно-связанной воды в акво-комплексах переходных металлов собрано в обзорной статье Ханта [59]. Анализируя эти данные, автор приходит к выводу о том, что существует корреляция между донорными свойствами лигандов, находящихся в координационной сфере помимо воды (т. е. эффективным зарядом центрального атома), и ускоряющим действием этих лигандов на реакцию обмена воды в комплексе. Подтверждающие это положение данные для некоторых акво-комплексов никеля(П) приведены в табл. 4 к — константа скорости изотопного обмена при 25° С). [c.84]

    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]

    Электронные спектры комплексов переходных металлов можно интерпретировать с помощью теории кристаллического поля. При обсуждении комплексов 0 мы будаЛ заниматься системами с локальной симметрией О,,, хотя симметрия всей молекулярной системы может быть и не такой. При описании типа расположения донорных атомов, непосредственно связанных с металлом, мы не будем строго придерживаться терминов симметрии и не будем учитывать остальные атомы лигандов. Естественно, такое допущение не всегда оправдано. В данном разделе мы рассмотрим, как интерпретировать и предсказывать электронные спектры и как опенить величины наблюдаемого -орбитального расщепления. Мы должны дать представление об эффективном методе координационной химии — использовании электронных спектров при рещснин структурных проблем. Все эти вопросы более подробно обсуждаются в ряде монографий, в которых ссылки на работы, содержащие спектры многих комплексов [1. 2, 4, 5, 9, 10, 12]. [c.88]

    Совершенно очевидно, что нелегко различить анионно-координационный катализ и катализ комплексами переходных металлов. По-видимому, как в предложенном Косси механизме полимеризации, так и при гидрогенизации олефинов на (Ru Ie) (разд. П1.3. Д) действует один и тот же механизм внедрения, и если алкильная группа, связанная с центральным ионом, имеет резко выраженный анионный характер [245], то то же можно сказать и о хемосорбированных группах на поверхности полупроводящего окисла, как, например, СГ2О3 (разд. П.2. А). [c.119]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    НОГО иона зависит, по крайней мере, от трех факторов от числа неспаренных электронов (л) от спектроскопического основногс состояния и высших состояний, если они отстоят от основногс состояния на величину порядка кТ, и от симметрии и силы электростатического поля, создаваемого лигандами, находяш,имися в координационной сфере. Чтобы увидеть, как парамагнетизм комплексов переходных металлов зависит от этих факторов, удобно подраз делить парамагнитные вещества на четыре основных типа .  [c.274]

    K. II и III получают присоединением координационно ненасыщ. комплексов переходных металлов к К. типа I. [c.317]

    Наличие стерически доступных координационных партнеров способствует повышению устойчивости образуемых комплексных соединений и соответствующей избирательности. Так, введение арсоновой группы в молекулу комплексона приводит к образованию прочных комплексных соединений со свинцом и кобальтом, фосфоновая группа придает комплексону свойства, позволяющие полярографически дифференцировать комплексы переходных металлов в кислой среде. Антранилдиуксус-ная кислота (2.3.3) образует сравнительно устойчивый (lg/(мLЯi7) комплекс с лантаном [302]. [c.231]

    Ионно-молекулярные реакции являются основой не только химической ионизации, их роль также существенна в процессах эмиссии ионов, протекающих при бомбардировке быстрыми атомами (ББА) объектов в конденсированной фазе. Масс-спектрометрия с ББА уникальна по чувствительности и информативности, применяется в биологии и медицине для исследования кинетики реакций, в том числе ферментативных в координационной химии позволяет определять структуру и устойчивость 7с-комплексов переходных металлов, оценивать термодинамические констаигы устойчивости комплексов щелочных металлов с краун-эфирами и т.д. [c.143]

    Мягкий метод получения комплексов с а-связями углерод—металл основан иа окислительном присоединении органических соединенпй к координационно ненасыщенным комплексам переходных металлов с конфигурацией (1 и Такой процесс часто сопровождается восстановительным элиминированием, приводящим к образованию продуктов с новыми углерод-углеродными связями, что представляет особый интерес для органического синтеза. Реакции окислительного присоединения известны для соединений родия. иридия, рутения, никеля, палладия и платины [84]. Участвую-щиii в процессе первоначальный комплекс переходного металла может быть изображен формулой где —2 соответству- [c.259]

    Модификация стерических и аяектронных свойств лигандов, явно не участвующих в химическом превращении в ходе каталитического процесса, например, фосфинов или карбонилов может играть решающую роль в проявлении активности и селективности катализатора. Это позволяет регулировать каталитические свойства комплексов переходных металлов, так как в каталитическом цикле переходные металлы способны проявлять различные степени окисления и координации, объединять и ориентировать различные компоненты реакционной среды в пределах координационной сферы, стабилизировать промежуточные реакционноспособные соединения (гидриды, алкилы металлов и др.). [c.515]

    В этих соединениях вокруг центрального катиона (атома) регулярно расположены молекулы или ионы, и с этой точки зрения они напоминают комплексные соли. Однако название соль к ним неприменимо и лучше называть их просто комплексами или координационными соединениями. Лиганды, которые легко координируются атомами металла с образованием низковалентных комплексов, приведены в нижней части табл. 4.31. Координируются также амины, ионы С1 , Вг , 1 . Исключение составляет вода, р- и ионы кислородсодержащих кислот. Координационную связь в низковалентных комплексах нельзя объяснить путем кислотно-основных взаимодействий по Льюису (разд. В.З настоящей главы). Комплексы, содержащие такие связи, называют невернеровскими. Напротив, обычные комплексы, в которых взаимодействие осуществляется по Льюису (включая и незаряженные комплексные соли), называют вернеровскими. Такое деление удобно, и его часто используют на практике. Применяемые в синтетической химии катализаторы на основе комплексов переходных металлов в большинстве относятся к невернеровскому типу. [c.224]

    Качественное объяснение оптических и магнитных свойств координационных комплексов оказывается возможным на основе рассмотрения расщепления энергетических уровней в системе с одним -электроном (см. рис. 15.3). Соображения, изложенные в разд. 15.3, приводят к выводу об указанном выше снятнп вырождения -уровня, однако они ничего не говорят о величине этого расщепления. В принципе расщепление может быть сколь угодно малым (предел слабого поля) или, наоборот, очень большим (предел сильного поля). Реальное поведение комплексов переходных металлов зависит от природы лигандов. Чем сильнее взаимодействие между лигандами и металлом, тем больше поведение комплекса приближается к пределу сильного поля, и наоборот. В действительности это взаимодействие определяется характером химической связи, а не является чисто электростатическим. Многие незаряженные лиганды создают эффект более сильного поля, чем многие ионные лиганды. Например, для не- [c.320]

    Во всех рассмотренных выше комплексах атом переходного металла достигает при комплексообразовании электронной конфигурации инертного газа и является координационно насыщенным. Полагают, что в комплексах переходных металлов между атомом металла и тт-донором имеется дативная связь. Одна из моделей дативной связи предложена М. Дьюаром в 1951 г. Согласно этой модели, связь металла с олефином осуществляется одновременно за счет связывающей и разрыхляющей орбиталей. Например, в комплексе иона Ag(I) с этиленом предполагается наличие дативной связи. Она включает донорно-акцепторное связывание двух видов а-связь - за счет занятой я-орбитали этилена и вакантной 5 -орбитали иона серебра я-связь -за счет вакантной я -орбитали этилена и одной из заполненных 4ii-opбитa-лей, например 4ё, серебра. [c.683]

    Рассмотрены новейшие данные по винильной полимеризации би- и полициклических олефинов и их сополимеризации с этиленом под влиянием координационных катализаторов на основе комплексов переходных металлов. Особое внимание уделено исследованиям по полимеризации норборнена и его сополимеризации с этиленом. Кратко описаны свойства образующихся при этом полимеров и сополимеров, представляющих интерес в качестве новых материалов для оптической электроники, электротехники, медицинской техники и других областей применения. [c.28]

    Если молекула воды, находящаяся во внутренней координационной сфере переходного металла, замещается лигандом, то замена е растворителя должно существенно влиять на кинетику этой реакции. Пирсон и Эллген [43] проверили эту идею, заменив воду метаном при изучении комплексов никеля(Ц). Авторы нащли, что в метаноле нейтральные лиганды образуют с никелем (II) комплексы с меньщей скоростью, чем в воде. Одновалентные анионы реагируют в метаноле с такой же скоростью, как и в воде. С другой стороны, двухвалентные анионы реагируют в метаноле быстрее. На основе этих данных авторы получили разумные количественные оценки, согласующиеся с механизмом взаимного обмена ионных пар в реакциях образования комплексных соединений. [c.413]

    Электронная конфигурация и координационные числа центральног иона в некоторых комплексах переходных металлов [c.138]

    Основная область научных исследований — химия переходных металлов. Разработал стереохимию комплексов с кратной связью металл — лиганд. Открыл стерео-специфические реакции цис-эффект, реакцию протонизации с дислокацией лиганда, хелатную изомерию. Один из создателей модели транс-влтпия в гексако-ординационных комплексах переходных металлов и ( с-влияния лигандов в комплексах непереходных элементов. На основе реакций перераспределения лигандов открыл равновесия изомеров комплексов фосфора, мышьяка, сурьмы, ниобия, тантала и иода. Развил стереохимию второй координационной сферы. Обобщил данные о кислотно-основных взаимодействиях фторидов в неводных средах. Получил ряд новых классов тугоплавких веществ, в том числе высокотемпературные аналоги фос-фонитрилхлоридов. [c.87]

    Основные научные работы посвящены каталитической химии и химии координационных соединений. Исследовал (1942—1946) строение и свойства комплексных соединений титана. Занимался (с 1947) рещением проблемы фиксации атмосферного азота посредством комплексных металлоорганических катализаторов. Установил строение некоторых комплексов переходных металлов с олефинами, алкильными и арильными производными алюминия и других металлов нашел факторы, повыщающие реакционную способность таких комплексов, особенно в процессах связывания атмосферного азота. [322] [c.554]

    Критический обзор некоторых важных результатов в изучении комплексов переходных металлов методом инфракрасных спектров был сделан Коттоном [262]. В этом обзоре обсуждаются инфракрасные спектры многих неорганических координационных соединений, а также-спектры следующих органических комплексов металл-сэндвичевых соединений, циклопентадиениловых карбонилов металлов, нитрозилов, алкилов и пр., р-дикетонов, оксалатов и соответствующих комплексов, алкеновых и алкиновых комплексов, комплексов аминокислот, мочевины, этилендиаминтетрауксусной кислоты, диметилгли-оксимов, 8-оксихинолина, комплексов больших органических лигандов, таких, как производные тетрафенилпор-финов и комплексных соединений щавелевой кислоты и ее производных. [c.88]


Смотреть страницы где упоминается термин Координационные комплексы с переходными металлами: [c.355]    [c.343]    [c.149]    [c.264]    [c.53]    [c.170]    [c.139]    [c.306]    [c.60]    [c.480]   
Смотреть главы в:

Хроматографическое разделение энантиомеров -> Координационные комплексы с переходными металлами




ПОИСК





Смотрите так же термины и статьи:

Комплексы координационные

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы переходные



© 2024 chem21.info Реклама на сайте