Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран определение в при анализе руд

    Своеобразные химические свойства фтора и большое практическое значение многих его соединений обусловили развитие ряда методов, основанных на образовании или разложении нерастворимых и комплексных соединений. Известно, что ионы фтора образуют в водных растворах прочные комплексные (иногда нерастворимые) соединения с алюминием, железом, кремнием, цирконием, ураном, титаном и другими элементами. Некоторые соединения (например, фтористый алюминий) растворимы в воде, но очень мало диссоциируют и почти не подвергаются гидролизу. Эти свойства соединений фтора широко используются в химическом анализе для определения и отделения ряда элементов, а также для определения ионов фтора Для методов, основанных на образовании или разложении соединений фтора, характерны следующие группы реакций. [c.426]


    Опытное определение порядкового номера элемента дало возможность определить число элементов между водородом и ураном, а также число лантаноидов. Ныне все места в периодической системе заполнены и новые элементы в промежутке от Z= до 2=107 не могут быть открыты ни на Земле, ни в космосе. Действительно, химическим анализом грунта Луны, доставленного на Землю в Советском Союзе и США, обнаружены только те элементы, которые имеются в периодической системе. Однако сама периодическая система не закончена. Возможно открытие новых трансурановых элементов. [c.56]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Метод определения фтора [397] заключается в паровой дистилляции HF из сернокислого раствора пробы при 150°С и титровании его нитратом тор я при pH 3,2 в присутствии индикатора. Перед возгонкой основную массу плутония отделяют осаждением в виде сульфата. Этот метод, по всей видимости, мало чем отличается от метода, применяемого для определения фтора в азотнокислых растворах уранила [700]. В последнем случае титрование проводят в присутствии солянокислого гидроксиламина, который добавляют для разрушения окислов азота. Ниже приведена методика анализа растворов урана на содержание фтора.  [c.387]

    При количественном эмиссионном анализе сравн)"вают интенсивность линии определяемого элемента с интенсивностью линии элемента сравнения. В качестве элементов сравнения в случае определения тория используют стронций или уран. В случае применения стронция были получены удовлетворительные результаты при анализе минералов как с высоким (35—50%), так и с низким (0,1%) содержанием тория [49]. Путем использования для сравнения линий урана при соот- [c.88]

    Для концентрирования следов тория, а также отделения больших его количеств от малых количеств р. з. э, чрезвычайно эффективна экстракция тория окисью мезитила, которую можно применять в присутствии фосфатов и арсенатов. Значительный интерес, с точки зрения возможности анализа сложных минералов с невысоким содержанием тория, а также определения урана и тория из одной навески, представляет метод распределительной хроматографии на целлюлозе, основанный на различной растворимости нитратов уранила и тория в эфире в зависимости от кислотности последнего. [c.158]


    Для урана такими реакциями являются прежде всего цветные с неорганическими и органическими реагентами и люминесцентные. В отсутствие прочих радиоактивных элементов уран может быть быстро определен по радиоактивности [72, 225, 635, 655]. Ультрамалые количества урана можно определить методом микрорадиографии по количеству распадов, фиксируемых специальными толстослойными фотопластинками 435, 807, 808]. Реже для обнаружения урана используют некоторые другие методы полярографические [944], спектральные [167,442], метод нейтронного активационного анализа [724, 924]. Эти достаточно сложные инструментальные методы в основном применяются для количественного определения урана. Они подробно описываются в соответствующих разделах книги. [c.34]

    Вследствие этого, несмотря на большое число разработанных весовых методов определения урана, они находят ограниченное практическое применение [184, 208]. Весовые методы часто применяются для определения урана в продуктах с высоким его содержанием, в различных концентратах, в металлическом уране и его сплавах. В арбитражных анализах, а также в анализах стандартных образцов весовые методы также во многих случаях часто предпочитаются другим методам. [c.56]

    Позже Н. И. Удальцовой (1955 г.) комплексон П1 был применен и для анализа руд. Метод заключался в превращении большинства сопутствующих урану элементов в растворимые комплексонаты, экстракции урана из нейтрального раствора хлороформом в виде диэтилдитиокарбамата и реэкстракции его в водный раствор карбоната аммония определение в зависимости от количества урана Может быть произведено колориметрическим или иным способом. [c.125]

    В настоящем разделе рассмотрены свойства свечения уранил-иона в связи с количественным определением урана, а также используемые в анализе приемы и аппаратура. [c.144]

    Значительный интерес представляет применение радиоактивационного анализа для определения изотопного состава урана. Точнее говоря, радиоактивационный анализ позволяет определить лишь количество того стабильного изотопа, из которого образуется при облучении радиоактивный изотоп. Содержание же элемента находят путем расчета на основе известного содержания данного стабильного изотопа в природной смеси. Однако, например, содержание в обогащенном или выгоревшем уране не соответствует природному соотношению, а тождественность изотопного состава урана метеоритного и земного происхождения нуждается в доказательстве. В связи с этим был проведен ряд исследований по определению изотопного состава образцов урана различного происхождения. Результаты показали, что в ряде случаев радиоактивационный анализ не уступает по точности масс-спектральному методу, а в отдельных случаях превосходит по быстроте определения. [c.256]

    ОПРЕДЕЛЕНИЕ МАЛЫХ КОЛИЧЕСТВ ПРИМЕСЕЙ В УРАНЕ МЕТОДАМИ СПЕКТРАЛЬНОГО АНАЛИЗА [c.358]

    В 1947 г. С. Л. Мандельштамом с сотрудниками [40, 151 ] был разработан метод определения примесей в уране, так называемый метод испарения , свободный от указанного недостатка. Независимо от авторов [151 ] А. Н. Зайдель и сотрудники 175, 76, 76а), предложили метод испарения в вакууме, характеризующийся несколько большей чувствительностью и воспроизводимостью. Однако метод испарения в вакууме не применим к анализу урана (см. ниже). [c.359]

    Чувствительность определения бора в уране методом испарения равна 7 10 %. Точность анализа составляет 10—15% от определяемой концентрации. На рис. 61 приведен градуировочный график для определения бора в уране. [c.364]

    Для определения малы.х количеств платины и палладия в уране обычные методы спектрального анализа, описанные выше, непригодны. Для успешного анализа необходимо применение методов предварительного химического обогащения проб. [c.368]

    Метод определения Ос1, 8т, Ей в уране, предложенный А. И. Зайделем, Н. И. Калитеевским, А. Н. Разумовским, П. П. Якимовой [77, 78], свободен от указанных недостатков. Эти авторы используют лантан как носитель при отделении р.з.э. от урана и как элемент сравнения при спектральном анализе концентрата. [c.370]

    По описанной схеме авторы определяют Ос1, 8т, Ни в уране с чувствительностью 10 %. Ошибка анализа составляет 15%. Потери р.з.э. в процессе отделения их от урана не сказываются на точности анализа и не приводят к грубым ошибкам в определении содержания р.з.э., так как в процессе обогащения не изменяется отношение концентраций  [c.370]

    Определение малых количеств примесеи в уране методами спектрального анализа. .................... [c.431]

    Методы газохроматографического анализа применяют для определения хрома в сплавах [200, 1010, 1012], металлическом уране [751], геологических и лунных образцах [736, 1012], воздухе [c.69]

    Чувствительность спектрального анализа можно повысить, используя химические методы отделения и обогащения проб. Так, для спектрального определения бериллия (наряду с другими примесями) в уране и плутонии предварительно отделяют его от основных элементов [484—486]. Этот метод позволяет значительно сократить содержание тяжелых металлов в сжигаемой пробе, что чрезвычайно важно при анализе радиоактивных препаратов. [c.101]


    Определение рзэ в уране. Анализ технологических полупродуктов, сплавов, а также U не очень высокой степени очистки по рзэ начинается всегда с предварительного отделения U и других возможных компонентов. Пробы металлов растворяют в любой [c.238]

    Оказалось, что трехфтористый уран нелегко получить, и впервые он был приготовлен при щироком исследовании соединений урана в 1938—1945 гг. В результате этих работ предложены два основных метода его получения, заключающиеся в восстановлении четырехфтористого урана а) тонко измельченным металлическим ураном, приготовленным разложением гидрида, и б) водородом. По первому методу при 1500°С образуется черная коксообразная масса, загрязненная иОгРг, ПОг, ир4 и ураном . Химический анализ образцов, основанный на определении общей восстановительной способности, показал, что содержание урана в лучшем из образцов составляет около 91% это, однако, минимальное значение . Восстановление водородом высокой степени очистки ри 1000°С требует строгого контроля как температуры, так и чистоты реагентов. Невозможность осуществления такого контроля явилась, по-видимому, причиной безуспешности многих прежних попыток применения метода восстановления водородом. [c.147]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]

    Обычно этим методом пользуются при анализах проб, содержащих уран г 0,001%. Однако при наличии чувствительных фотоэлектрических фотометров для измерения интенсивности свечения границы применимости этого метода могут быть расширены до 1% UgOg и более [10291. Люминесцентный метод нашел применение при определениях урана в минералах, рудах, породах, рудничных, буровых, речных и морских водах, в животных и растительных организмах, в контроле технологического процесса получения урана и при поисках урановых месторождений. [c.144]

    Для точных количественных определений урана люминесцентным методом требуется предварительно отделить уран от примесей. Ряд исследователй [224, 4921 предлагают вскрытие основных пород проводить нагреванием с концентрированной соляной кислотой. Остаток обрабатывают смесью фтористоводородной и серной кислот для удаления 3[02. Уран осаждают совместно с гидроокисью железа осадок гидроокисей обрабатывают карбонатом аммония, как и в обычной схеме аммиачно-карбонатного разделения. Кислые же породы сплавляют с содой, 8102 отделяют обработкой соляной кислотой металлы группы сероводорода осаждают сероводородом, далее анализ ведут по аммиачно-карбонатной схеме (см. стр. 283), [c.159]

    Для определения урана в породах, в кислых вытяжках П. А. Волковым в 1953 г. был разработан метод отделения его от сопут- ствующих элементов путем осаждения фосфата четырехвалентного урана в кислой среде с применением соосадителя — циркония. Осадок фосфатов тщательно перемешивают с известным количеством фтористого натрия. Уран определяют флуориметрическим методом. По данным автора, небольшие количества циркония, находящиеся вместе с ураном в перле, не мешают определению урана флуориметрическим методом. Этот метод был применен [143] для анализа изверженных горных пород, содержащих от ЫО до 1-10 % урана. [c.160]

    Для определения урана в рудах и концентратах, содержащих от десятых до лей до целых процентов урана и ряд примесей (Си, ре, V, Мо, Сг, Т1 и др., рекомендуется [233] следующий метод анализа навеску 0,1 г руды, предварительно прокаленной около2 час. при 500—600°, обрабатывают царской водкой, выпаривают избыток кислот и затем уран вместе с другими полуторными окислами осаждают аммиаком, не содержащим СО2. При этом медь остается в растворе. Если меди много, следует осаждение аммиаком повторить еще раз. Затем осадок, содержащий диуранат аммония и другие гидроокиси металлов, растворяют в соляной кислоте (1 1) и отделяют железо обработкой раствора углекислым аммонием при нагревании до 50—60°. [c.197]

    При анализе руд и других материалов, содержащих большие количества ванадия, уран отделяют осаждением фосфата уранила или выделяют уран в виде труднорастворимого урано-ванадата кальция из уксуснокислого раствора, а затем отделяют уран от ванадия осаждением фосфата уранила (см. подробнее стр. 267). Применение комплексона III в качестве маскирующего агента при осаждении уранила в виде фосфата позволяет отделить уран не только от V, но и OTFe, А1, Сг (III), Ni, Со, редкоземельных элементов, Сг (VI) и др. Выделение двойных фторидов, например NaF-UF4 или UF4, соосаждением его с aFg из кислых растворов дает возможность отделить уран от Zr, Та, Ti, Мо и др., что может быть использовано при определении его в рудах, содержащих большие количества Zr, Та и др. [c.347]

    Энергии связи электронов 5/-, 7з-оболочек, участвующих в оптических переходах атомов урана и других тяжелых элементов, имеют очень близкие значения, а сам атом урана обладает низким ионизационным потенциалом. Спектр урана, как и других трансурановых элементов, является чрезвычайно сложным. В нем вместе с линиями нейтральных атомов присутствуют линии однократноио-низированных атомов, поэтому спектр урана представляет собо11 сплошную сетку линий, расположенных на фоне интенсивного непрерывного спектра. В связи с этим обычные методы спектрального анализа не могут применяться для успешного определения малых количеств примесей в уране. [c.358]

    Фред, Нахтриб, Томпкинс [524] разработали так называемый метод медной искры для определения примесей в уране. Анализ по этому методу проводится путем перевода пробы в раствор, капля которого наносится на торец медного электрода. Этот электрод после упаривания пробы подвергается спектральному анализу. Чувствительность определения примесей по этому методу составляет 0,1—0,01%. [c.358]

    Определению этого элемента в уране посвящена также работа Отдела химической службы Спрингфильда [333]. Для проведения анализа металлический уран переводят в закись-окись идОд, которую затем прессуют в таблетки. Пробу в виде таблеток помещают в кратер медного электрода и сжигают в дуге постоянного тока сила тока — 7 а. Спектр регистрируют на спектрографе Джарель-Эш, имеющем дисперсию 5 А/мм в первом порядке. [c.367]

    Для разделения микропримесей Сг, N1, Со, Си, Мп, Сс1, Мо, Ге, Ка, Кр и Аи при их определении в уране используют метод хроматографии на бумаге [8861. Растворителем является смесь этанол — НС1 — вода (75 20 5), уран отделяют на бумаге, используя в качестве растворителя смесь диэтилового эфира с НКОд (95 5),-при этом все микрокомпоненты остаются на старте. Активационный анализ сочетают с хроматографией на бумаге при определении золота в трихлорсилане [886]. Предложена [1086] схема разделения примесей при анализе НС1, НКОд и Н2О2, используемых в полупроводниковой технике. Чувствительность составляет 10- 3 Аи. [c.187]

    Описан [1197] косвенный радиометрический метод определения микрограммовых количеств мышьяка, основанный на осаждении его в виде арсената уранила-аммония (NH4UO2ASO4) и измерении а-активности полученного осадка, принадлежаш ей радиоактивным изотопам урана. Метод позволяет определять 1—8 мкг As с ошибкой 5—10%. Вследствие малой селективности метода (мешают фосфаты, а также ионы металлов, образуюш ие малорастворимые арсенаты) и большой продолжительности анализа метод не нашел практического применения. [c.114]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Основное место при отделении отводится экстракции, как наиболее быстрому и эффективному способу. U может быть экстрагирован многими реагентами (см. также стр. 131). Чаще всего для этого используется эфирная экстракция нитрата уранила и азотнокислой среды [609, 1107, 1804], повторяемая несколько раз до практически полного удаления U. Остающийся водный раствор передается для спектрального анализа на индивидуальные рзэ [II07, 1804] или для пламенно-фотометрического определения La [609]. Чувствительность в этих определениях равна 10 %. Кроме того, определение La в сульфате уранила может быть проведено и без отделения U [1432], но только с гораздо меньшей чувствительностью. [c.239]

    Анализ металтаческого U, его окиси я солей. К урану, служащему в настоящее враля основным видом ядерного горючего, предъявляются очень высокие требования по отношению к присутствию рзэ, которые для отдельных представителен группы лимитируются количествами в 10" —10 %. Такие определения невозможны без предварительного концентрирования, которое проводится преимущественно одним из двух методов экстракционным или хроматографическим. [c.250]


Смотреть страницы где упоминается термин Уран определение в при анализе руд: [c.539]    [c.180]    [c.186]    [c.326]    [c.340]    [c.345]    [c.350]    [c.145]    [c.42]    [c.131]    [c.40]    [c.43]   
Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.353 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ определение

Уранил определение



© 2025 chem21.info Реклама на сайте