Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая цинка

    Кислоты образуют естественную группу веществ, обладающих рядом характерных свойств. Они химически активны, реагируют с такими металлами, как цинк, олово или железо, которые при растворении в кислотах выделяют водород. Кислоты имеют Кислый вкус, вызывают характерные изменения цветов некоторых красите лей и т. д. [c.53]


    При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (П.) Таки.м способом получают железо (в доменном процессе), водород и многие цветные металлы (олово, свинец, цинк и пр.)  [c.242]

    По химической активности цинк и его аналоги уступают щелочноземельным металлам. При этом в противоположность подгруппе кальция в подгруппе цинка с ростом атомной массы химическая активность металлов (как и в других подгруппах -элементов, кроме подгруппы скандия) понижается. Об этом, в частности, свидетельствуют AG/ дихлоридов и характер изменения их значений в зависимости от порядкового номера элементов (рис. 247). Об этом же свидетельствуют значения электродных потенциалов металлов цинк и кадмий в ряду напряжений расположены до водорода, ртуть — после. Цинк—химически активный металл, легко растворяется в кислотах и при нагревании в щелочах  [c.632]

    Как бы то ни было, медь и цинк в монетах, магний в фотовспышках — все вещества имеют свой, присущий им набор физических и химических свойств. В таком случае, как из миллионов имеющихся в нашем распоряжении веществ выбрать наиболее подходящее для данной конкретной цели На наше счастье, природа упростила для нас эту задачу. Все вещества состоят из относительно небольшого количества строительных блоков - атомов различных химических элементов. Знание того, в чем они сходны и чем различаются друг от друга, может в значительной степени облегчить задачу выбора используемых веществ. Химическим элементам будет посвящена следующая глава. [c.119]

    Гальванический элемент — простое устройство для превращения химической энергии в электрическую в небольшом удобном контейнере. При изготовлении коммерческих элементов химики используют самые разнообразные комбинации металлов и ионов. В простейшем сухом элементе (рис. Vni.lO) — называемом часто батарейкой — в качестве анода используется цинк, а в качестве катода — диоксид марганца (МпОг). Раствор в большинстве сухих элементов содержит ионы аммония и хлорид цинка. В щелочных батарейках раствор содержит гидроксид калия (КОН). [c.529]

    Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]


    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    Цинк химически чистый .. 419,4 [c.377]

    Комбинация двух электрохимических электродов предназначен для превращения химической энергии в электрическую, в Элемент медь/цинк гп/гп +//Си +/Си (+) [c.92]

    Применение. Цинк входит в состав ряда важных сплавов, в частности латуни. В большом масштабе проводят цинкование железа с целью защиты его от коррозии. Цинк —обычный материал для анодов химических источников тока. 2п5 широко применяют в качестве люминофора, это сое,Е1,инение используют также как пигмент в лаках и красках. [c.599]

    Прямой синтез органохлорсиланов основан на реакции хлорпроизводных с металлическим кремнием или лучше с контактной массой, содержащей не только кремний, но и медь. Добавки меди позволяют снизить температуру реакции и избежать развития пиролитических процессов, снижающих выход целевых продуктов. Кроме меди были испытаны добавки других металлов (алюминий, цинк, серебро), но кремне-медный контакт оказался наиболее дешевым и эффективным. Его готовят сплавлением кремния с медью, спеканием их порошков в атмосфере водорода или химическим осаждением меди на кремнии. Контакт обычно содержит 80—95 /о кремния и 5—20% меди. [c.305]

    В качестве восстановления используют синтез-газ, водород, азотоводородную смесь. Имеет место образование цинк-хромовой шпинели вследствие диффузии более подвижного компонента — СгзОз — на поверхность менее подвижного — ZnO. В результате такой диффузии ZnO покрывается мономолекулярным слоем СггОз, дальнейшая диффузия молекул СггОз в кристаллическую решетку ZnO приводит к образованию каталитически активной шпинели [152, 153]. Восстановление проводят либо в самой колонне синтеза при очень медленном нагреве, либо в специальном аппарате. В процессе восстановления изменяется физико-химическая характеристика контактной массы. Восстановленная масса имеет насыпную плотность 1,28 г/см пористость 36%, удельную поверхность -150 м2/г. [c.154]

    Механизм химической реакции, сопровождающей процесс очистки бензинов хлористым цинком, еще недостаточно изучен. Известно, что сернистые соединения, вступая в реакцию, образуют сернистый цинк  [c.315]

    Было выяснено, что гидролизованные катионы металлов лучше всего извлекаются из нитратных сред, плохо из сульфатных. Из нитратных сред хорошо извлекаются висмут (П1), железо (Н1), медь, кобальт, цинк, никель, хуже цирконий и гафний. Состав экстрагируемых комплексов был установлен, как непосредственным химическим анализом, так и методом сдвига равновесия. [c.41]

    Для каждой термопары существует характеристика, получаемая при ее калибровке. Калибровке следует подвергать пе только новые термопары, но и бывшие некоторое время в употреблении. Калибровку осуществляют по эталонному потенциометру. В лабораторных условиях можно также проводить калибровку, определяя несколько темнературных точек (температуры кипения или плавления химически чистых веществ). В качестве таких эталонов используют дистиллированную воду (для точки 100 С), нафталин, свинец, цинк, сурьму и др. Температуры кипения или затвердевания некоторых из этих веществ следующие (в °С)  [c.15]

    Результат пространственного движения частиц вещества — носителей электрического заряда во многих случаях можно наблюдать непосредственно в ходе простейших экспериментов. Если, например, погрузить цинковый стержень в раствор сернокислой меди, то медь из раствора будет осаждаться па цинке, окрашивая его поверхность в красноватый цвет, а цинк в виде ионов переходить в раствор. Сернокислая медь в водном растворе практически полностью диссоциирована, поэтому такой химический процесс описывается следующим уравнением  [c.31]

    Для защиты стальных сооружений принципиально могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений выше железа, т. е. имеющие более электроотрицательный потенциал. Практически используются магний, цинк и алюминий, физико-химические характеристики которых приведены в табл. 21. [c.155]


    Для протекторов, применяемых для защиты стальных сооружений, могут использоваться все металлы, имеющие более электроотрицательный потенциал, чем железо. Наибольшее распространение получили магний, цинк и алюминий. Физико-химически характеристики их приведены ниже. [c.158]

    Марганец придает сталям твердость и другие важные качества. Он находит применение и для производства безжелезных сплавов с медью, никелем, алюминием, магнием и другими металлами. Для производства этих сплавов ферросплавы марганца непригодны, поэтому применяется марганец в виде металла той или иной степени чистоты. Производство элементов цинк-марганцевой системы (аноды из активизированной двуокиси марганца), химическая промышленность, стекловарение и сельское хозяйство (микроудобрения) потребляют 5% добываемого марганца. [c.279]

    С агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии г равнительно невелики. К Чтодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника кaтoднaя защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы) Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют жертвенным анодом . [c.504]

    В противоположность щелочноземельным металлам цинк и кадмий в свободном состоянии можно получить химическим восстановлением или электролизом растворов их соединений. Пирометаллургическое полу1ение Zn и d из их сернистых руд проводится в две стадии. Сначала руды подвергаются окислительному обжигу, затем полученные оксиды восстанавливают углем  [c.633]

    Особую опасность представляет высокая агрессивность аммиака, воздействующего на медь, серебро, цинк и другие металлы и сплавы. Чугун и сталь наиболее пригодны в качестве материалов для изготовления оборудования и трубопроводов, предназначенных для аммиака. Однако безводный аммиак оказывает сильное коррозионное воздействие на стальные трубопроводы в присутствии двуокиси углерода и воздуха. Для предотвращения коррозионного растрескивания углеродистой стали сжиженный аммиак, транспортируемый по трубопроводам, должен содержать не менее 0,2% (масс.) воды. При меньщем содержании воды в аммиаке в присутствии воздуха возможно коррозионное растрескивание. Для транспортирования сжиженного аммиака применяют трубы, химический состав которых соответствует определенным требованиям. Трубы для аммиакопровода должны изготовляться по специальным техническим условиям, в которых помимо химического состава должны быть оговорены требования к механическим свойствам металла и сварке, допускам толщин стенок, диаметров труб и т. д. [c.35]

    Примером диаграммы состояния двойной системы, более сложной, чем диаграмма железо—углерод, мом<ет служить диаграмма системы медь—цинк (рис. XIV, 15). Сплавы меди с цинком при затвердевании дают шесть твердых растворов различной структуры а, р, - , В, е и т]. Твердые растворы р,8,е являются примерами бертоллидов. Зг атрихованные области диаграммы отвечают двухфазным системам, образов иным соответственно твердыми растворами а+р, [5+7, Р +т, 7+8 и т. д. Медь и цинк дают только одно химическое соединение (дальтонид) Си22пз. [c.417]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]

    Обжиг серного колчедана. Серный колчедан — минерал, составной частью (70— 90%) которого является FeSj (53,3% серы и 46,7% железа). В промышленных печах обжигается флотационный колчедан, имеющий следующий химический состав (в %) сера — 40—45 железо — 35—39 цинк — 0,5—0,6 медь — 0.3—0,5 свинец — 0,01—0,2 мышьяк — 0,07—0,09 кремнезем—14—18 вода — 4—6 кроме того содержится кобальт, селен, теллур, серебро, кадмий, золото. [c.25]

    Физические и химические свойства. Цинк, кадмий и ртуть — тяжелые металлы. Ртуть — жидкий при обыкновенных условиях металл его температура плавления около —39°С. Значения физ -ческих свойств щи1ка, кадмия и ртути приведены в табл. 37. [c.329]

    Из всех искусственно получаемых солей сероводородной кислоты технический сульфид натрия (не менее 63—65%-ной чистоты) нашел наибольшее применение. Его используют как восстановитель для органических нитросоедннений, при дублении кож, в флотационных процессах, в частности прн флотации цинковой обманки и руд, содержащих железо, цинк и свинец. В химической промышленности Г а, 5 является полупродуктом для получения ЫзгСО, и ЫаОИ. [c.42]

    Химические свойства воды также определяются ее составом и строением. Молекулу воды можно разрушить только энергичным внешним воздействием. Вода начинает заметно разлагаться только при 2000 °С (термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация). На воду действует также радиоактивное излучение. При этом образуются водород, кислород и пероксид водорода Н2О2. Щелочные и щелочноземельные металлы разлагают воду с выделением водорода при обычной температуре, а магний и цинк — при кипячении. Железо реагирует с водяными парами при красном калении. Вода является одной из причин коррозии — ржавления металлов (с. 156). Благородные металлы с водой не реагируют. [c.101]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]

    Цинк — активный металл, легко растворяется в кислотах, его соединения слабо амфотерны. При переходе к ртути основные свойства соединений несколько усиливаются, но химическая активность свободного металла резко падает. Ртуть интересна тем, что является единственным жидким металлом при нормальных условиях, вст1)ечается в самородном виде. Пары кадмия и ртути очень ядовиты. [c.160]

    Уже упоминалось, что коррозионные процессы, как правило, являются электрохимическими. В водной среде они протекают так же, как и в батарейке для карманного фонаря, состоящей из центрального угольного и внешнего цинкового электродов, разделенных электролитом — раствором хлорида аммония (рис. 2.1). Лампочка, соединенная с обоими электродами, горит, пока электрическая энергия генерируется химическими реакциями на электродах. На угольном электроде (положительный полюс) идет реакция химического восстановления, на цинковом (отрицательный полюс) — окисления, при этом металлический цинк превращается в гидратированные ионы цинка Zn -nHaO. В водном растворе ионы притягивают молекулы воды (правда, число последних неопределенно). Этим ионы металла в растворе отличаются от ионов в газе, которые не гидратируются. Обычно при обозначении гидр атированных ионов цинка не учитывают гидратную воду и пишут просто Zn . Чем больше поток электричества в элементе, тем большее количество цинка корродирует. Эта связь описывается количественно законом Фарадея, открытым в начале XIX века  [c.20]

    Опытами на машине трения, проведенными в последние годы Ф. Боуденом и его сотрудниками, показано [И, 12], что различные соединения на разных металлах дают или физически адсорбированную пленку или пленку, являющуюся результатом хемосорб-ционного процесса. Например, на инертных металлах (платина, серебро, никель, хром) и на стекле смазочные свойства жирных кислот ниже, чем парафиновых углеводородов. Наоборот, на активных поверхностях (медь, кадмий, цинк, магний, железо, алюминий) жирные кислоты дают значительно меньшее трение. Таким образом, металлы, наиболее подверженные химическому воздействию в присутствии жирных кислот, смазываются наиболее эффективно. [c.150]

    Присадки представляют собой сложные химические вещества, в состав молекул которых входят алкйлфенолы, сера, фосфор, кислород, азот, металлы (кальций, барий, магний, цинк). Гетероатомы очень часто входят в состав молекулы присадки в виде таких сложных группировок, как, например, ксантогена-товая (I) или дитиофосфатная (И)  [c.384]

    На химическую стабильность бензинов при хранении заметное илияние оказывает и контактирование с металлами. При исследовании каталитического воздействия металлов на окисление бензинов было установлено, что наиболее активными являются медь и сплавы на ее основе, а наименьшей активностью обладают свинец и железо. Цинк и алюминий и их сплавы занимают промежуточное положение. [c.267]

    Эксплуатационные испытания биоразлагаемых гидравлических масел на базе сложных эфиров показали возможность коррозионного износа деталей из сплавов, содержащих свинец, цинк и олово. Существенные потери массы металлов отмечены при испытании железных пластин со свинцовым, цинковым и оловянным покрытием в среде сложных эфиров триметилолпропана. Химический анализ образовавшегося осадка показал наличие свинцовых, цинковых и оловянных мыл жирных кислот. Ввод 1% карбодиимидов при 80°С резко снизил кислотное число и не привел к образованию нерастворимых осадков. [c.202]

    В пятидесятых годах XIX века ученик Бунзена Эдуард Фран-кланд получил цинк-, олово-, ртутьсодержащие органические (т.е. металлоорганические) соединения. Кстати, Франк1инд - один из создателей теории типов химических соедашений, впервые ввел понятие валентности. [c.191]

    Смолы и осадки, образующиеся при окислении прямогонных реактивных и дизельных топлив, характеризуются высоким содержанием кислорода 45-50, серы 7-9, азота 0,5-2,0, зольных элементов (металлов) 7-9%. Среди зольных элементов обычно преобладают медь 1-3, цинк - до 1,0, кальций -до 1,0, железо, алюминий, олове и др. до 0,1%. Эти данные подтверждают активное участие в термохимических превращениях в топливах гетероатомных соединений, каталитическое н.ч. " кке металлов (медь, бронза) и химическое взаимодействие продуктов окисления с металлами. Зависимости осадкообразования в реактивных топливах от темперзт) . приведены на рис. 8. Снижение массы осадка при температ1 р2. 130- 90 С связано с повышением давления насыщенных паров (уменьшением доступа кислорода к поверхности топлива) и увеличением растворимости продуктов окисления в топливе. [c.87]

    Получение металлов высокой чистоты [1]. Цинк марки ЦВ, содержащий 99,99% 2п, и кадмий, содержащий 99,99% С(1, получают дистилляцией катодных металлов. Для получения цинка более высокой чистоты (99,999% 2п) разработан метод переочистки электролитический металл растворяют химически или анодно. При химическом растворении полученные электролиты подвергают глубокой очистке, электролиз проводят в электролизере с диафрагмой и нерастворимыми анодами. При анодном растворении осуществляется двухстадийная очистка вначале проводят анодное растворение обычного промышленного металла и его катодное осаждение, а затем повторное переосаждение полученного металла. [c.279]


Смотреть страницы где упоминается термин Химическая цинка: [c.75]    [c.231]    [c.100]    [c.176]    [c.644]    [c.102]    [c.119]    [c.357]    [c.565]    [c.113]    [c.154]    [c.173]   
Коррозия (1981) -- [ c.602 ]




ПОИСК







© 2025 chem21.info Реклама на сайте