Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографический анализ металлов

    В настоящее время известно около 50 различных химических и физических методов количественного анализа. Главное отличие химических методов заключается в том, что они основаны на химических реакциях. В физических методах анализа химические реакции или вовсе не используются, или имеют второстепенное значение (например, химические процессы в пламени дуги или искры при спектральном анализе металлов). Наиболее распространенными химическими методами анализа являются весовой, объемный, колориметрический, полярографический. Наиболее распространенным физическим методом количественного анализа является спектральный анализ. [c.16]


    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]

    Количественный полярографический анализ основан на тех же процессах, которые рассмотрены выше для качественного анализа. Испытуемый раствор помещают в электролизер и соединяют электроды с источником тока. При достаточном напряжении начинается электролитическое выделение данного металла, например кадмия на ртутном катоде. Дальнейшее увеличение напряжения приводит к возрастанию силы тока, причем характер зависимости между этими двумя величинами обусловлен некоторыми рассматриваемыми ниже физическими условиями проведения электролиза. [c.212]

    Электрохимические методы количественного анализа можно разделить на три группы (см, 5). Так, к первой группе методов, основанных на измерении количества продукта реакции, относится электровесовой анализ и электрохимические методы разделения элементов. Эти методы были рассмотрены подробно в гл. 9 и 10. С этой же группой тесно связан (в отношении методики) полярографический анализ (см. гл. 11) хотя он и занимает несколько особое положение. В практическом отношении электровесовой анализ особенно успешно применяется, главным образом, для определения больших количеств цветных металлов, а полярографический анализ — для определения малых количеств этих же металлов. Приблизительно в таком же отношении друг к другу находятся весовой анализ и колориметрия, которые применяются для определения больших (весовой анализ) или малых (колориметрический анализ) количеств почти всех элементов. [c.434]


    Перенапряжение необходимо иметь в виду при вычислении напряжения разложения при выделении металлов. Явление перенапряжения дает возможность выделять ряд электроотрицательных металлов из водных растворов их солей если бы не было явления перенапряжения, то при электролизе растворов солей цинка или свинца вместо металлического цинка или свинца должен был бы выделяться только водород (см. рис. 12.3). Большое перенапряжение для выделения водорода на ртути имеет значение в полярографическом анализе, а также при использовании амальгам металлов в качестве восстановителей. [c.221]

    Главной особенностью процесса электролиза при полярографическом анализе является применение катода (при электролитическом окислении — анода) с очень малой поверхностью, например ртутного капающего электрода. Вследствие этого плотность тока на катоде очень велика. В результате в части раствора, находящегося вблизи поверхности такого микрокатода, концентрация определяемых ионов при электролизе быстро уменьшается . При небольшой силе тока эта убыль ионов пополняется за счет диффузии ионов из других, более отдаленных от поверхности микрокатода слоев раствора. Поэтому вначале при увеличении напряжения сила тока продолжает возрастать, и кривая круто поднимается вверх. Однако при достижении некоторой силы тока металл выделяется настолько интенсивно, что процесс диффузии не обеспечивает подхода к поверхности электрода достаточного количества ионов восстанавливающегося металла. Поэтому, несмотря на дальнейшее увеличение напряжения, сила тока не будет изменяться кри- [c.485]

    Содержатся справочные сведения по физико-химическим и физическим методам анализа потенциометрии, кондуктометрии, амперометрии и полярографическому анализу, спектроскопии, фотоколориметрическому, нефелометрическому и турбодиметрическому анализам, пламенной фотометрии, флюоресцентному анализу, рефрактометрии, хроматографии на бумаге и ионообменных смолах. Приведены схемы анализа сложных веществ природного происхождения и искусственно полученных веществ (резины, пластмасс, различных нефтепродуктов), методы определения функциональных групп органических соединений, сведения по техническому анализу металлов и сплавов и др. [c.384]

    Методы V группы. В последнее время широкое распространение получил новый способ полярографического анализа, основанный на предварительном электролитическом концентрировании металлов в виде амальгам на ртутном катоде [356, 565, 1114, 1260] или в виде малорастворимого осадка на твердых катодах с последующим анодным растворением их при постепенно снижающемся [c.81]

    Возвращаясь к уравнению (1.8), отметим, что образующаяся при электровосстановлении амальгама будет в данных условиях очень разбавленной. Поэтому можно считать ее идеальным раствором, в связи с чем величины к и Ка будут постоянными (/а=1). Следовательно, при данной концентрации посторонней соли (и при данной температуре) потенциал полуволны является величиной практически постоянной, не зависящей от концентрации восстанавливающихся ионов. Это свойство 1/2 чрезвычайно важно для качественного полярографического анализа. Точно так же на потенциал полуволны иона металла не влияет начавшийся ранее процесс восстановления других веществ, а также характеристики капилляра. При восстановлении ионов металлов (Ре, Сг, V, Мо и др.), не растворяющихся в ртути. [c.18]

    Металлическая ртуть — широко используемое в практике химических лабораторий во многих слу чаях незаменимое вещество Общеизвестно ее приме нение для заполнения термометров, вакуумметров, затворов, реле, электрических прерывателей, для полу чения высокого вакуума в ртутных диффузионных насосах, при электрохимических исследованиях, в полярографическом анализе с применением ртутного капельного электрода, для точной калибровки мерной посуды, для определения пористости адсорбентов и диаметра капиллярных трубок Широко используют ся способность ртути образовывать амальгамы с боль шинством металлов, а также ее каталитические свойства в различных химических реакциях [c.252]

    Полярографический анализ. Для определения металлов в раствор погружают два электрода. Обычно берут анод с постоян- [c.11]

    Чаще всего полярографический анализ применяется для определения ионов металлов, которые электролитически восстанавливаются на ртутном катоде. Для этого в испытуемый раствор опускают два электрода один из них, как правило, катод, имеет малую поверхность, например капли ртути, вытекающие из очень тонкого капилляра. Анод представляет собой слой ртути с большой поверхностью на дне электролитического сосуда. Электроды соединяют с источником постоянного тока и постепенно повышают напряжение, наблюдая за изменением силы тока в зависимости от приложенного напряжения. Эта зависимость имеет неравномерный характер и выражается кривой с перегибами — волнами. Напряжение, при котором возникают эти волны, зависит от состава электролита и характерно для того или другого иона металла. Высота этих волн зависит от концентрации восстанавливающегося иона. Таким образом, по кривой зависимости силы тока от приложенного напряжения в данных условиях можно судить о составе и концентрации электролита, т. е. провести качественный и количественный анализ раствора. [c.209]


    Применение полярографического метода при анализе металлов. [c.216]

    В полярографическом анализе для переведения определяемых катионов в комплексные соединения пользуются самыми разнообразными веществами. Из неорганических комплексообразователей чаще всего применяют гидроокись аммония или пиридин (часто в смеси с их хлористоводородными солями), гидроокиси щелочных металлов, роданиды, иодиды, цианиды и др. Применяются и многие органические вещества винная и лимонная кислоты, этилендиамин, триэтаноламин, этилендиаминтетрауксусная кислота и ее соли (трилон Б) и др. [c.219]

    Полярографические свойства большинства элементов изучены в электролитах различного состава. Благодаря этому можно путем подбора соответствующих комплексообразующих веществ производить определение нескольких элементов в одном растворе. Особый интерес представляет использование нескольких комплексообразующих веществ, из которых одни вызывают сдвиг потенциалов восстановления или окисления определяемых элементов, а другие — маскировку сопутствующих элементов [1]. Большие возможности открываются также для совместного определения нескольких элементов при применении неводных растворов (ацетонитрил, формамид, спирты и др.), в особенности при полярографировании в крайне отрицательной области потенциалов (щелочные и щелочноземельные металлы). Широко применяются в полярографическом анализе твердые электроды из платины, золота, серебра, графита, карбида бора и др. Особенно важную роль они должны сыграть при использовании принципа полярографии в качестве датчика в автоматическом анализе. [c.192]

    На капающем ртутном электроде в результате перерывов тока в момент отрыва капель на кривой отмечаются небольшие осцилляции (рис. 251). Вольт-амперная кривая, полученная при работе с твердыми электродами (платиновым, золотым или из какого-либо другого металла), показана на рис. 250, б. Зубцы на ней отсутствуют. Твердые электроды в настоящее время успешно применяются в практике полярографического анализа наряду с капающим ртутным эти два типа электродов взаимно дополняют друг друга в полярографическом анализе. [c.438]

    Теория количественного полярографического анализа. Рассмотрим процессы, происходящие на поверхности капли и в слое около поверхности. На поверхности капли при достижении необходимого потенциала происходит разряд ионов. Образовавшийся металл растворяется в ртути, образуя амальгаму. Если в растворе были, например, ионы цинка, то при достижении потенциала —0,97 в начинается выделение атомов цинка на поверхности капли и образование амальгамы. Теперь ионы цинка из раствора вследствие диффузии начнут поступать в приэлектродный слой. Этот процесс диффузии обусловливает, как упоминалось выше, возникновение предельного диффузионного тока, дающего полярографическую волну на вольт-амперной кривой. Рассматривая процесс диффузии ионов к непрерывно растущей ртутной капле, Илькович вывел уравнение для величины диффузионного тока. Вывод этого уравнения ввиду его сложности не приводится. [c.444]

    Методика анализа заключалась в селективном растворении окислов, сульфатов и сульфидов с последующим полярографическим определением металлов в получаемых растворах. Металлическая фаза определялась по разности. [c.58]

    В аналитической практике широко используется концентрирование примесей из большого объема анализируемого раствора связыванием их в малорастворимые соединения. С другой стороны, в последнее время в полярографическом анализе начали применять концентрирование определяемого веш ества непосредственно на электроде с последующей регистрацией поляризационной кривой электрорастворения и определением концентрации соответствующих ионов в растворе по величине максимального тока электрорастворения. Подробно описано концентрирование ионов металлов в виде соответствующей амальгамы на стационарном ртутном электроде [1—12]. В ряде работ предлагается накапливать определяемое вещество в виде осадка металла на твердом платиновом [13—15] или графитовом [16—18] электроде. [c.185]

    В связи с применением ртутно-графитовых электродов в полярографическом анализе весьма подробно исследованы условия осаждения ртути на углеродные материалы [64—68]. Перенапряжение осаждения ртути выше на краевой ориентации пирографита по сравнению с базисной и возрастает при переходе от нитратных к ацетатным растворам [47, 48]. Посадка адатомов начинается только при концентрации ртути в растворе >10" моль/л. Представлены [69, 70] данные по электроосаждению других металлов на поверхности углеродных электродов. Показано [69], что для ионов лития, ртути и свинца имеет место монослойная адсорбция адатомов при потенциалах более положительных (на 0,75 0,075 и 0,155 В соответственно) по сравнению с образованием фазы. В случае Сд, Си и Ag образование адатомов не было зарегистрировано. Автору не удалось объяснить это различие на основе модели, предложенной в работе [71] и учитывающей разность в электронейтральности адатома и подложки. В литературе отсутствуют пока работы по электро-катализу адатомами на углеродных носителях. [c.182]

    Для проведения полярографического анализа достаточен небольшой объем анализируемого раствора (иногда 0,1—0,02 мл). Полярографирование продолжается 2—5 мин. Чувствительность определения составляет 10" —10 %, а метод так называемой амальгамной полярографии дает возможность определять примеси в особо чистых металлах от 10" до 10" %. [c.259]

    Аналогичные приемы экстракционного выделения следов металлов применяются в полярографическом анализе. Часто хро-матографические методы разделения осуществляются в комбинации с экстракцией. [c.139]

    Процессы, происходящие на электродах. Основное преимущество ртутного капающего электрода для полярографического анализа катионов заключается прежде всего в том, что поверхность его постоянно обновляется. На ней не накапливается, как на твердых электродах, слой постороннего металла, изменяющего свойства электрода, и поэтому условия определения остаются все время постоянными. Кроме того, перенапряжение водорода на ртути очень велико, т. е, свободный водород выделяется на ртуть только при больших отрицательных значениях потенциала. Это дает возможность определять многпе металлы в нейтральных и даже кислых растворах. [c.149]

    Существуют специальные микрополярографы, на которых можно определить 10 ° г вещества в 0,01 мл раствора. Полярографический анализ широко применяется в анализе лекарственных веществ, в биохимии, фармации и клинических анализах. Полярографически определяют следы примесей в химико-фармацевтических препаратах и химических реактивах, например, присутствие меди в растворах лимонной кислоты, чистоту хирургического эфира, содержание формальдегида в таблетках. Кроме металлов, многие органические соединения способны восстанавливаться на ртутном капельном электроде, например, хингидрон, оксигемоглобин, никотиновая кислота, пиридин, ацеталь-дегид, ацетон. [c.512]

    Полярографический анализ требует минимальной предварительной подготовки образца, что предупреждает возможность внесения загрязнений в образец. Полярография может сочетаться, например, с ионообменной хроматографией по методу Кемуля, экстракцией и другими физико-химическими методами анализа. В качестве комплек-сообразователей и маскирующих средств применяют различные органические реагенты. Твердые электроды из благородных металлов в ряде случаев заменяют борокарбидными и графитовыми, которые химически стойки. [c.515]

    В полярографическом анализе для переведения определяемых катионов в комплексные соединения пользуются различными веществами. Из неорганических лигандов чаще всего применяют водный раствор аммиака или пиридин (часто в смеси с их хлоридами), гидроксиды щелочных металлов, роданиды, иодиды, цианиды. Применяют и многие органические вещества винную и лимонную кислоты, этиленди-амин, триэтаноламин, этилендиаминтетрауксусную кислоту и ее соли (ЭДТА) и др. [c.505]

    Электрофорез (от электро и греч. phoresus — перемещение) — передвижение заряженных частиц (коллоидных) в жидкой нли газообразной среде под действие.м внешнего электрического поля. Э. применяют для обезвоживания торфа, красок, очистки глины и каолина для химической промышленности, для осаждения кау= чука и латекса, дымов и туманов, для изучения состава растворов и т. д. Электрохимические методы анализа — большинство их основано на электролизе. Сюда относят электрогравиметрический ана.тиз (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулопометрию и др. Кроме того, к Э, м. а. относят методы, основанные на измерении электропроводности (кондуктометр и я) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, коидуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование), Электрохимический ряд активности (напряжения) металлов фяд активности металлов) показывает их сравнительную активность в реакциях окисления-восста новления (слева направо восстановительная активность уменьшается)  [c.157]

    Разработан полярографический анализ сточных вод производства поливинилхлорида [251]. При этом определяли азоди-изобутиронитрил, лаурилпероксид, винилхлорид, ацетальдегид и содержащиеся в стоках хлориды металлов. Средняя относительная ошибка определения компонентов в стоках не превышала 6%. Для определения малых содержаний органических примесей (мономеров — метилметакрилата, стирола и его гомологов инициаторов полимеризации — лаурила и бензоила пероксидов, циклогексилпероксидикарбоната, азодиизобутиро-нитрила) в промышленных стоках производств полимеров был применен полярографический метод в сочетании с экстракцией 252]. [c.155]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента. До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    С и H я к о в a С. Т., Шень Ю я - Ч и, Полярографическое определение ультрамалых количеств металлов со стационарным ртутным электродом. Теория я практика полярографического анализа, изд-во Штииица Ак. лаук Молд. ССР, 1962, [c.110]

    Ряд исследователей использовали возможность самостоятельного применения экстрагированного дитизоната металла в качестве удовлетворительного способа обогащения пробы с последующим определением исследуемых элементов другими (кроме упомянутых в разделах Эмиссионный спектральный анализ , Полярографический анализ и Хроматографический адсорбционный анализ ) методами. В одних случаях рекомендованные комбинированые методы оказались пригодными, в других — большей частью относящихся к более старым литературным данным — малопригодными или совершенно непригодными. [c.373]

    Взаимодействие НФН с фенолами в присутствии карбонатов щелочных металлов проводили в ДМФА (табл. 1). Ход реакции контролировали нолярографически по расходованию НФН, а также методом тонкослойной хроматографии (ТСХ). Поскольку реакция НФН с фенолом в присутствии карбонатов щелочных металлов — гетерофазная, и поверхность контакта двух фаз имеет большое значение для воспроизводимости данных полярографического анализа, то нами были стабилизированы условия опытов, а именно скорость перемешивания была выбрана такой, что дальнейшее увеличение числа оборотов мешалки У>ЮОО об/мин) не сказывалось на начальной скорости реакции и конверсии НФН, а диаметр зерен безводных карбонатов щелочных металлов не превышал 0,25 мд4. [c.67]


Библиография для Полярографический анализ металлов: [c.483]    [c.170]   
Смотреть страницы где упоминается термин Полярографический анализ металлов: [c.298]    [c.194]    [c.503]    [c.63]    [c.19]    [c.96]    [c.131]    [c.238]    [c.210]    [c.221]    [c.100]    [c.738]    [c.793]    [c.83]   
Количественный анализ (0) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ полярографический



© 2025 chem21.info Реклама на сайте