Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутаминовая кислота значение

    Вернемся еще раз к свойствам аминогруппы глицина она проявляет более сильные основные свойства (более высокое значение рКа), чем обычный органический амин. Можно ожидать, что единичный отрицательный заряд карбоксильной группы приведет к повышению электронной плотности на аминогруппе и что электростатическое притяжение (эффект ноля) между аммоний-катионом и карбоксилат-апионом затруднит отрыв протона от аммонийной группы. Это действительно так, и оба эффекта играют важную роль. Тем не менее рКа аминогруппы глицина равен 9,60, тогда как у метиламина 10,64 (табл. 2.1). Это происходит потому, что наиболее важным, или определяющим, эффектом является оттягивание электронов карбоксильной (карбонильной) группой. Так, если нейтрализовать весь заряд карбоксильной группы путем превращения ее в амид, то рКа аминогруппы глициламида равен 8,0, а для глицилглицина 8,13. При этом не возможны ни повышение электронной плотности карбоксилат-ани-оном, ни эффект поля (электростатическое влияние) единственным эффектом остается оттягивание электронов амидной карбонильной группой. Отметим, что этерификация аспарагиновой и глутаминовой кислот аналогичным образом влияет на свойства полученных соединений (табл. 2.1). Аминогруппы диэтиловых эфиров обладают кислыми свойствами. [c.40]


    Эффективным представляется использование аминокислот как пищевых добавок, имеющее двоякое значение в качестве лечебных компонентов, а также для улучшения питательной ценности пищевьгх продуктов и придания им оптимальных вкусовых свойств. Так, глутаминовая кислота, помимо фармакологического эффекта, улучшает вкус мясных продуктов, является весьма важным ингредиентом при консервировании и замораживании. Многие другие аминокислоты также улучшают вкус тех или иных пищевых продуктов. Термическая обработка пищи в присутствии таких аминокислот, как валин, метионин или глицин, приводит к получению своеобразного аромата мясных или хлебобулочных изделий. о-Триптофан во много раз слаще сахарозы и может использоваться для диабетического питания. В пищевой промышленности такие аминокислоты, как глицин, лизин, цистеин, используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту, и замедляющих пероксидное окисление липидов. Кроме того, будучи сладким на вкус, глицин применяется в пищевой промышленности при производстве приправ и безалкогольных напитков. [c.27]

    У аминокислот, имеющих диссоциирующие группы в боковой цепи (Glu, Asp, ys, Туг, Lys, Arg, His), на кривых титрования появляется третий перегиб (р/ з). На рис. 1-6 приведены кривые титрования лизина и глутаминовой кислоты, значения рК — в табл. 1-6. [c.32]

    Электрофоретическое разделение (ЭФ) АК проводят в буферных растворах, используя ионные свойства АК. Например, если в смеси присутствуют глу и лиз, то в буфере со значением pH 6 глутаминовая кислота заряжена отрицательно и двигается к аноду, а лизин заряжен положительно и двигается к катоду. [c.19]

    Роль трансаминаз и реакций трансаминирования в обмене аминокислот. Чрезвычайно широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим воздействиям, абсолютная стереохимическая специфичность по отношению к Ь-аминокислотам, а также высокая каталитическая активность в процессах трансаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот. Ранее было указано, что при физиологических значениях pH среды активность оксидазы Ь-аминокислот резко снижена. Учитывая это обстоятельство, а также высокую скорость протекания реакции трансаминирования, А.Е. Браунштейн выдвинул гипотезу о возможности существования в животных тканях непрямого пути дезаминирования аминокислот через реакции трансаминирования, названного им трансдезаминированием. Основой для вьщвижения этой гипотезы послужили также данные Г. Эйлера о том, что в животных тканях из всех природных аминокислот с высокой скоростью дезаминируется только Е-глутаминовая кислота в реакции, катализируемой высокоактивной и специфической глутамат-дегидрогеназой. [c.437]


    Практическое значение имеет метод (а) — Валлера (1948), хотя выход фолиевой кислоты составляет не более 40—60% от теоретического, считая на п-аминобензоил-/-глутаминовую кислоту. [c.672]

    Поли ( -глутаминовая кислота) подобно другим полиаминокислотам, имеющим ионизуемые боковые группы, легко растворима в воде и при значениях pH, достаточно низких, чтобы подавить -ионизацию, принимает конформацию а-спирали. Дополнительная спирализация, образующаяся за счет сетки связанных водородными связями 7-карбоксильных групп, еще больше стабилизует структуру. Такой сверхспирализации способствует добавление к раствору диоксана или гидроксилсодержащих растворителей. [c.430]

    В сельском хозяйстве аминокислоты применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат лизин в очень малых количествах, поэтому добавление лизина в корма сельскохозяйственных животных с целью их сбалансирования по белковому питанию имеет первостепенное значение. Кроме того, в сельском хозяйстве аминокислоты применяются для защиты растений от различных болезней (метионин, глутаминовая кислота, валин). Производные таких аминокислот, как аланин и глицин, обладают гербицидным действием и используются для защиты растений от сорняков. [c.27]

    Какое значение pH среды может и.меть раствор глутаминовой кислоты  [c.668]

    Глутаминовая кислота не является незаменимой, однако она имеет большое значение для улучшения вкусовых качеств пищи (см. том I 3.12). Ее г олучают из растительных белков (глутеин, соевый жмых) кислотным гидролизом. Источником получения фенилаланина и аргинина также является белковое сырье (яичный альбумин, зеин). Основные аминокислоты осаждаются из гидролизата желатина в виде флавиана-тов (солей 2,4-динитро-1-нафтол-7-сульфокислоты). Лнзин осаждается из белковых гидролизатов в виде труднорастворимого монопи-крата. [c.658]

    Рацемизация. Протон может быть вновь присоединен в исходное а-положение, но уже иестереоспецифично. Рацемазы, катализирующие реакции этого типа, имеют важное значение для бактерий, которые должны синтезировать из соответствующих Ь-изомеров О-аланин и О-глутаминовую кислоту, необходимые для синтеза пептидогликанов. [c.218]

    В настоящее время суммарное производство а-аминокислот составляет в мире около полумиллиона тонн в год. Оно стало крупнотоннажным благодаря их широкому применению как в медицине, так и в сельском хозяйстве (ростстимулирующие кормовые добавки) и в пищевой промышленности (вкусовые и консервирующие вещества). О практическом значении индивидуальных аминокислот говорят масштабы их химического и биохимического синтеза триптофан производят в количестве от 0,2 до 0,3 тыс. т, глицин - 7-10 тыс. т, лизин - около 50 тыс. т, метионин - 150-200 тыс. т и глутаминовую кислоту - более 200 тыс. т в год. [c.36]

    Глутаминовая кислота, например, кристаллизуется прямо из концентрированного гидролизата, насыщенного хлористым водородом, цистин и тирозин отделяют благодаря их плохой растворимости в воде. Селективное отделение ароматических аминокислот удается выполнить с помощью адсорбции на активированном угле. Полученную при гидролизе смесь аминокислот лучше всего разделить хроматографически. Выделению отдельных компонентов предшествует обычно разделение на кислые, основные и нейтральные группы аминокислот, при этом большое значение имеют электрофорез и специфические иоиообменники. Раннее распространенные методы разделения, такие, как фракционная перегонка эфиров (по Фишеру), экстракция моноаминокарбоновых кислот н-бутиловым или амиловым спиртом (по Дакину), осаждение гексоновых оснований лизина, аргинина и гистидина фосфорновольфрамовой кислотой или флавиановой кислотой, теперь имеют только второстепенное значение. [c.39]

    В специальных кальций-связывающих белках, или парвальбуми-нах , ион Са + связан как с амидной группой, так и с кластером карбок-силат-ионов. Установлена трехмерная структура такого белка из мышцы карпа (рис. 4-5). В этом белке имеется два центра связывания для кальция. В одном из них (рис. 4-5, Л, слева) ион Са + связан с четырьмя карбоксильными группами боковых цепей остатков аспарагиновой и глутаминовой кислот, с гидроксильной группой остатка серина, а также с карбонильным кислородом 57-го остатка пептидной цепи. Заметим, что эта Же самая пептидная группа связана водородной связью с карбонильной группой другого сегмента полипептидной цепи, расположенного рядом со вторым центром связывания иона Са + (рис. 4-5, Л справа). Этот центр содержит четыре карбоксилат-иона (один из которых осуществляет координационное связывание иона a + обоими ато-мами кислорода) и карбонильную пептидную группу. Значение данной [c.268]

    Особое техническое значение приобрела ферментация глутаминовой кислоты так называемыми микроорганизмами дикого типа. Культивируют бактерии в стерилизованных ферментерах при 35° С, используя в качестве источника углерода глюкозу или патоку и вводя в систему воздух и аммиак. Через 40 ч из культуры можно изолировать глутаминовую кислоту. Выход составляет 50 кг аминокислоты на 100 кг введенной глюкозы. Глутаминовая кислота в форме моноглутамата натрия применяется в значительных количествах как вкусовое вещество н приправа в пищевой промышленности. При незначительной добавке глутамата заметно усиливается и улучшается естественный вкус мясных блюд. [c.41]


    Используя значения р/Са, полученные в задаче 3, постройте теоретическую кривую титрования, изображающую зависимость числа эквивалентов Н и ОН , реагирующих с 1 молем глицина, от pH. Заметим, что форма такой кривой не зависит от р/Са. Постройте аналогичные кривые для глутаминовой кислоты (рКа для которой равны 2,19 4,25 и 9,67), гистидина (р/С равны 1,82 6,00 и 9,17) и лизина (р/Са равны 2,18 8,95 и 10,53). [c.332]

    Оказалось, что топография шести колец Ы-ацетилглюкозамина или М-ацетилмурамовой кислоты в молекуле полисахаридного субстрата в точности соответствует впадине в молекуле лизоцима. При действии лизоцима связь между четвертым и пятым кольцами разрывается (рис. 2-9). В предполагаемом активном центре остаток глутаминовой кислоты (№ 35) находится в положении, точно соответствующем его роли донора протонов [т. е. ВН в уравнении (7-10)], тогда как остаток аспарагиновой кислоты (№ 52) лежит на противоположной стороне впадины. Как 01и-35, так и Азр-52 имеют аномально высокие значения р/Са (микроскопические р/Са составляют —5,3 и 4,6 соответственно) ) в полностью протонированном активном центре [12], что связано с гидрофобным окружением и наличием водородных связей с другими группами. Азр-52 обычно диссоциирует первым, и благодаря возникающему электростатическому взаимодействию 01и-35 остается протонированным вплоть до pH - 6. Расположенные рядом положительно заряженные основные группы влияют на величины р/Са, и поведение фермента, следовательно, зависит от ионной силы среды [12]. Анион Азр-52 лежит близко (на расстоянии - 0,3 нм) к центру положительного заряда, ожидаемого в карбоний-ионе [13], и, по-видимому, должен стабилизировать карбоний-ион [см. схему (7—10)]. [c.99]

    Синтез Штрекера имеет большое значение для получения в промышленности глутаминовой кислоты, метионина и лизина. Исходные альдегиды получают из продуктов нефтехимического производства, и синтезы обычно ведут через гидантоины. По методу Дюпона исходят из ацетилена  [c.43]

    Заряженные боковые цепи обычно находятся на поверхности молекул. Остатки аспарагиновой и глутаминовой кислот при физиологических значениях pH отрицательно заряжены. Из-за короткой боковой цепи карбоксильная группа Asp довольно жестко фиксирована относительно главной цепи. Это может быть причиной того, что карбоксильные группы активных центров принадлежат главным образом остаткам Asp, а не Glu. Как правило, оба остатка находятся на поверхности белков. [c.22]

    Глутаминовая кислота положительно влияет на глюконеоге-нез, в том числе и на образование пентоз, что имеет важное значение при росте дрожжей на безуглеводных средах. [c.109]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, р1 должна вычисляться из полусуммы значений рК для а- и е-МН,-групп. Таким образом, в интервале pH от 4,0 до 9,0 почти все аминокислоты существуют преимущественно в форме цвиттерионов с протонированпой аминогруппой и диссоциированной карбоксильной группой. Следует отме- [c.38]

    Оценивая значение ЦТК как процесса катаболических превращений ацетила, необходимо отметить его анаболические функции. Следовательно, ЦТК относится к амфиболическим путям метаболизма, т. е. выполняет не только функции окислительного катаболизма, но и связан с анаболическими процессами поставляет промежуточные метаболиты для реакций биосинтеза, например сукцинил-КоА — для синтеза гема, а-кетоглутарат-глутаминовой кислоты и др. (см. рис. 19.2). [c.265]

    Карбоксилирование. Этот вид модификации имес большое значение для свертывания крови. Карбоксильная груг па, введенная в радикал остатка глутаминовой кислоты в состаЕ белка протромбина, обусловливает связывание ионов Са и те самым превращение протромбина в тромбин. Карбоксилированк происходит с участием кофермента, в роли которого выступас витамин К (см. 14,2.2). [c.322]

    V-Аминомасляная кислота (ГАМК), образующаяся при де карбоксилировании глутаминовой кислоты, является нейромеди атором (см. 9.3.6). Большое биологическое значение имеет де карбоксилирование многих природных а-аминокислот — серина цистеина, лизина, триптофана, аспарагиновой кислоты и др. [c.340]

    Для глутаминовой кислоты (см. табл. 2) отклонение значений, полученных по Кьельдалю, от результатов потенциометрического определения составляет в среднем + 0,8 абс.%. В двух случаях из десяти по Кьельдалю получаются значения 101 и 102%. Расхождение между результатами, равное 1,82 и 2,66% (два случая из десяти), очевидно, следует объяснить присутствием азотсодержащих примесей, которые определяются как общий азот и завышают результаты. [c.106]

    По уравнению (109) была рассчитана [173] константа устойчивости комплекса цинка с глутаминовой кислотой Ig/ zn оеп = 5,73, величина которой оказалась в хорошем согласии со значением, определенным потенциометрически [175]. [c.357]

    Так как гелеобразование наблюдается в определенном диапазоне pH, то исследовались изменения удельного оптического вращения при pH от 6,5 до 13. Результаты представлены на рис. 29. Из сравнения результатов видно, что с увеличением pH удельное оптическое вращение растет, достигая максимального значения нри pH 12—13, что обусловлено развертыванием полипептидных цепей по мере накопления отрицательных зарядов на молекулах казеина. Для а-казеина и целого казеина нри pH выше 12 происходит уменьшение удельного оптического вращения. Это уменьшение, очевидно, связано с тем, что при большем избытке щелочь начинает взаимодействовать со свободными кислотными группами глутаминовой кислоты с образованием соли, что и приводит к изменению оптической активности [256—259]. [c.108]

    Однако при оценке этих данных следует учитывать, что значительная часть серина, тирозина и аспарагина разлагается в процессе кислотного гидролиза, а триптофан разрушается полностью. По той же причине не следует переоценивать превалирующего значения глутаминовой кислоты, глицина и лейцина, относящихся к группе более стойких аминокислот [15]. Состав аминокислотных смесей несколько изменяется в зависимости от взятых исходных фракциц. [c.73]

    Полипептиды с ионизированными боковыми цепями — по-ли-/--глутаминовую кислоту и поли- -лизии — теоретически рассмотрели Кримм и Марк [90] (потенциалы Шерага, е=10). Оказалось, что даже при таком большом значении е левая спираль этих полимеров выгоднее правой (при этом она несколько растянута и содержит 2,5 остатка в витке). [c.143]

    Пепсин, папайи и субтилизип обладают низкой специфичностью. Поэтому, за исключением пепсина, в этих ферментах, трудно обнаружить примеси других ферментов. В случае пепсина это не имеет большого значения, так как оптимум его активности наблюдается при pH 1,8—2,2, в то время как возможные примеси других ферментов проявляют свое действие в среде, близкой к нейтральной. Влияние примесей может быть ослаблено уменьшением времени переваривания исследуемого белка ферментом. Пепсин разрывает пептидные связи, соседние как с глутаминовой кислотой или глутамином, так и с фенилаланином или тирозином. Иногда отсутствие специфичности проявляется в том, что он гидролизует связи аланин — аланин и аланин — серии. Папаин обладает аналогичной низкой специфичностью с еще более широким спектром активности. Субтилизин также имеет широкий спектр активности, гидролизуя связи, которые расщепляют трипсин, химотрипсин и пепсин. Однако его особым преимуществом является способность гидролизовать нативные белки. Следовательно, с его помощью могут быть обнаружены дисульфидные моспжи, например в инсулине и рибонуклеазе. [c.395]

    В связи с быстрым развитием хроматографии аминокислот на сульфокатионитах использование других ионитов носит ограниченный характер. На начальных этапах ионообменной хроматографии для разделения аминокислот пытались использовать амберлит IR -50 [23, 24]. К недостаткам этого катионита относятся трудности уравновешивания колонки, и необходимость соблюдения точных значений pH образца. Сильноосновный анионит дауэкс 2-Х10 находит применение для разделения аспарагиновой и глутаминовой кислот, а также их производных [25]. На анионитах сильнее других аминокислот удерживаются ци-стеиновая кислота, фосфосерин и подобные им вещества, которые, следовательно, можно отделять и получать в чистом виде. Как и в случае сульфокатионитов, степень разделения на анионитах зависит от диаметра частиц, их однородности, степени. сшитости и других факторов. [c.334]

    Препаративное значение реакции выходит далеко за пределы получения простых кетонов или карбоновых кислот. В сложных синтезах важной их частью нередко является гидролиз и декарбоксилирование Р-кетоэфиров или малоновых эфиров. (Напишите схемы реакций для двух последних примеров в табл. ИЗ ) Из алкилированных N-ацилированных аминомалоновых эфиров (см. стр. 520) можно получать -аминокислоты, например глутаминовую кислоту из р-цианэтилацетаминомалонового эфира (см. табл. 125) и триптофан [схема (416, ///)] из скатилацетаминомалоно-вого эфира II). Получение этого соединения из грамина (/) и ацетамино-малонового эфира является примером алкилирования р-дикарбонильных [c.473]


Смотреть страницы где упоминается термин Глутаминовая кислота значение: [c.277]    [c.897]    [c.299]    [c.229]    [c.53]    [c.177]    [c.558]    [c.157]    [c.433]    [c.455]    [c.99]    [c.376]    [c.447]    [c.455]    [c.304]    [c.168]    [c.389]   
Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Глутаминовая кислота

кислоты, значения рКа



© 2025 chem21.info Реклама на сайте