Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Солевые механизм

    Ингибиторы можно классифицировать по различным признакам [4 30 48 144]. Так, по составу их разделяют на две группы неорганические и органические. Правда, сейчас уже можно говорить о металлорганических, и кремнийорганических ингибиторах и об их смесях. По областям применения их разделяют на ингибиторы кислотной коррозии, коррозии в нейтральных средах (морская и пресная. вода, солевые растворы и т. д.) и в щелочах. По условиям применения различают ингибиторы низкотемпературные и высокотемпературные, растворимые в воде или в углеводородах, и т. д. Мы будем пользоваться классификацией, в которой за основу ВЗЯТЫ особенности механизма их действия,, и рассмотрим две группы ингибиторов адсорбционные и пассивирующие. [c.17]


    Добавление азид-ионов увеличивает скорость ионизации (через солевой эффект), но снижает скорость гидролиза. Если образуется большее количество карбокатионов, а в спирт превращается меньшее их количество, то частично азид должен образовываться по реакции с карбокатионами (процесс SnI). Однако скорость ионизации всегда меньше, чем общая скорость реакции, поэтому часть азида должна получаться по механизму Sn2 [58]. Отсюда следует, что механизмы SnI и Sn2 работают одновременно [59]. [c.27]

    Полиморфизм сподумена — одно из важнейших свойств минерала, широко используемое (как будет показано далее) в практике обогащения сподуменовых руд и в гидрометаллургии лития. Большой интерес представляет он и для изучения механизма разложения сподумена различными солевыми реагентами. [c.30]

    В этой наименее изученной области вероятны одновременно протекающие процессы образования Мп+2 и МпООН. Кроме того, в этой области существенную роль играют ионы НН4+, механизм действия которых до настоящего времени еще С полной достоверностью не изучен. Предполагается, что ионы ЫН4+ и ионы 2п+2 играют роль во вторичных реакциях, которые в некоторых случаях не имеют электрохимической природы. Тем не менее в реальных источниках тока с солевым электролитом используется именно эта область pH. Это объясняется тем, что в слишком кислых электролитах не удается получить элементы с удовлетворительной сохранностью из-за коррозии цинка. [c.45]

    В первой главе обобщены теоретические представления и практические результаты по воздействию среды на процессы ползучести. Эти материалы позволяют осветить изменение кинетики разрушения под напряжением не только в плане механизмов, идентичных коррозионному растрескиванию, когда речь идет о достаточно сильном солевом коррозионном воздействии при повышенных температурах, но и в общем плане, в случае сложного влияния относительно слабых сред таких, как воздух. [c.6]

    Коррозионное растрескивание в хлоре и газообразной НС1 не было достаточно исследовано для подтверждения каких-либо выводов относительно механизма взаимодействия и процессов, контролирующих скорость. В работе [139] отмечена аналогия между КР в НС1 и высокотемпературным солевым растрескиванием. Наблюдение за растрескиванием титана под напряжением в атмосфере водорода показывает, что водород может выступать в качестве опасного компонента. Поскольку изучение этого явления находится еще на стадии исследования, мало известно о кинетике и характере растрескивания. [c.405]


    Наибольшие усилия в последние годы были направлены на достижение лучшего понимания механизма коррозионного растрескивания алюминиевых сплавов в морской воде и солевых растворах. Были исследованы сплавы 2014 [194, 195], 2024 [194, 196] и 6061 [194]. Типичным примером могут служить проведенные в лаборатории ВМС США испытания поковок из трех названных сплавов и сплава 7075 (гладкие образцы и ДКБ-образцы с предварительно нанесенной усталостной трещиной) в морской воде [194]. Для коротких поперечных образцов были получены такие значения параметра Кисс  [c.191]

    Еще до появления ингибированных растворов В. С. Шаров в серии статей 1934—1937 гг. предсказал их действие и описал его механизм. Последний применительно к силикатно-солевым растворам проявляется в уменьшении скорости гидратации вследствие гелеобразующего действия силиката натрия и уменьшении степени гидратации под влиянием ингибирующего электролита — соли. [c.353]

    Существует множество примеров зависимости катализа и связывания от конформационных изменений. Участок связывания химотрипсина решающим образом зависит от наличия солевого мостика между аспарагиновой кислотой-194 и концевой аминогруппой изолейцина-16 (см. рис. 24.1.14). В неактивном предшественнике химотрипсина, химотрипсиногене, например, каталитические группы расположены так же, как и в нативном ферменте, но гидрофобный карман отсутствует [49]. Последний формируется в результате индуцированных образованием солевого мостика изменений конформации аспарагиновой кислоты-194 и соседних остатков аминокислот — глицина-193 и метионина-192. Согласно кинетическим экспериментам, проведенным на химотрипсине, нечто подобное происходит при протонировании свободной формы (ЫНг) изолейцина-16. Форма фермента, характерная для высоких значений pH, неактивна, так как она не способна связывать субстрат. При быстром понижении pH раствора неактивной формы фермента с 12 до 7 связывание наблюдается, но только по прошествии определенного отрезка времени (менее секунды), во время которого фермент принимает активную конформацию [111]. В этом случае конформационное изменение должно предшествовать связыванию и явно слишком медленно для того, чтобы являться частью нормального механизма. [c.516]

    Из но " I )альных солевых растворов 1 ислород может выделяться за счет разряда гидроксильных ионов и молекул воды. Преобладающим будет тот процесс, который в данных условиях связан с меньнлей затратой энергии. В ко1щеитрированпых растворах кислородсодержащих кислот в реакции выделения кислорода, по крайней мере при высоких плотностях тока, непосредствешюе участие могут принимать анионы кислоты. Существование подобного механизма было доказано Геровичем с сотр. (1957). В их исследо- [c.419]

    Чтобы сопоставить экспериментальные кинетические данные с гипотезой о механизме реакции, необходима последовательная работа всех трех комплексов программ, причем программы ССА и ПП работают только один раз для каждого варианта механизма. Следует подчеркнуть, что число операций по расчету функций отклонений и их производных в полученных по изложенному алгоритму программах близко к числу операций, полученных при ручном программировании. САКР была использована для исследования кинетики и механизмов и получения кинетических уравнений в реакциях окислительного дегидрирования бутенов в дивинил на оксидном Bi—Мо-катализаторе, окисления этилена на серебре, синтеза карбонила никеля, окисления хлороводорода, на катализаторе u la—КС1 (1 1), окислительного хлорирования этилена на солевых хлормедных катализаторах, синтеза метанола на катализаторе ZnO/ rgOg, хлорирования метана и др. Для большинства из этих реакций число рассмотренных вариантов механизмов составляло от 10 до 20. Число найденных параметров для этих реакций составляло 15—25 [13]. [c.204]

    А- %А о концентрации катализаторов. При добавлении соли МА к раствору, в котором протекает реакция по данному механизму, скорость реакции возрастает, так как увеличивается слагаемое йд Сд в уравнении (IX, 48). Этот эффект называется вторичным солевым эффектом. [c.424]

    Хлор в растворе во время эксперимента не обнаружен, однако это обстоятельство не является доказательством отсутствия разложения НСЮ по хлорному механизму, так как растворимость хлора в водно-солевом растворе с повышением содержания Na l понижается [194], [c.55]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


    Предполагается, что и в этом случае галоидные ионы и водород в качестве опасных компонентов ответственны за высокотемпературное растрескивание. Предположение о роли водорода бы ло впервые сделано в работе [139], авторы которой остались его наиболее активными сторонниками. В основе предложенной гипотезы лежит образование водорода в результате пирогидролиза хлорида. Этот водород абсорбируется либо в металле, либо в области концентрации напряжений в вершине трещины, снижая энергию разрушения. Доказательства, приводимые в пользу механизма водородного охрупчивания, следующие 1) водород образуется в процессе высокотемпературной солевой коррозии 2) данные ASTM [144] и результаты [148] показывают, что водород может абсорбироваться в условиях высокотемпературного солевого коррозионного растрескивания 3) при комнатной температуре [c.402]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Из характера реакции сразу же следует, что переход ко все более полярным растворителям должен резко повышать скорость замещения вследствие ускорения соль-ватолитического распада исходной молекулы на ионы. Независимость определяющей скорость реакции медленной стадии диссоциации от концентрации нуклеофила может быть использована для определения характера реакции изменение концентрации Z не должно существенно сказаться на скорости замещения S.vi и будет влиять на скорость замещения 5д-2. Добавление иона X" будет замедлять скорость 5л 1-процесса, смещая равновесие диссоциации влево. Так, при гидролизе алкилхлоридов повышение концентрации ионов С1" тормозит процесс (солевой эффект). Если при переходе от одного радикала R к другому электронодонорные свойства R нарастают, то сольватолитический распад молекулы облегчится, и скорость замещения Saj возрастет. Если же процесс идет по механизму 2, то скорость замещения замедлится, поскольку нуклеофильный заместитель Z встретит в таком случае большее противодействие со стороны группы R. Отрицательный знак реакционной константы р для реакции сольволиза бензгидрилхлоридов дает важную информацию о том, что процесс течет по механизму 5лп, а не 5a 2 [c.192]

    По сравнению с электродными электрохимическими реакциями, процессы, протекающие в электролите, характеризуются более простой кинетикой, хотя при пропускании тока вполне допустимо, что их действительные механизмы имеют более сложный характер из-за возможного участия в химических реакциях, наблюдаемых в электролите, молекул воды или органического растворителя, солевых компонентов, расплава, коллоидновзвешенных частиц, мельчайших капелек металлического тумана и т. п. [c.17]

    На передовых заводах применяется метод автоматического управления загрузкой глинозема в ванну по электропроводимости солевого расплава. Установлено, что после растворения очередной лорции глинозема сопротивление расплава достигает максимума, затем постешенно снижается и по мере приближения анодного эффекта снова возрастает, что служит сигналом исполнительному механизму, управляющему этим процессом. [c.516]

    Детальные кинетические исследования, главным образом касающиеся солевых эффектов в реакциях сольволиза, обнаружили несоответствия в каждом из предложенных механизмов и привели к схеме двойственных ионных гар для объяснения получае,чых результатов. Эта работа наиболее тесно связана с именами С. Уипстейна и его сотрудшз-ков Б Калифорнийском университете (Лос-Анжелес), Они первыми предложили рассматривать в реакциях сольволиза даа интермедиата в виде различных ионных пар 112 . С тех пор эта гипотеза бы га уточнена н тщательно разработана другими учеными и является наиболее обычной интерпретацией реакций нуклеофильного замещения [13—15]. [c.175]

    Li 104 > LiBr >LiN03 > Li ОАс Такнм образом, бромистый литий в данном случае оказьшает солевой, а не каталитический эффект. На этом основании можно считать, что реакция происходнт по механизму Sg2 через ациклическое переходное состояние. [c.1592]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    Для расшифровки механизма действия некоторых пеногасителей интересны произведенные Е. И. Шмуком и сотрудниками исследования разрушения трехфазной пены в солевых суспензиях угля путем обработки ДС. При достаточных добавках ДС ориентация адсорбирующихся молекул такова, что происходит инверсия смачивания и гид-рофилизация поверхности. В результате устойчивая трехфазная пена переходит в малостойкую двухфазную. [c.213]

    Для сульфит-солевых и других высокоминерализованных растворов (например силикатно-солевых) типично изменениб характера осыпей. Вместо мелкочешуйчатых осколков порода выносится в виде крупных пластинок длиной до 10—15 см. Это связано с изменением механизма размокания и осмотическими процессами в аргиллитах. Проникновение жидкости и разрушение породы происходит в основном по трещинам и плоскостям напластования сланцеватых глин, что приводит к осыпанию более или менее крупных блоков. [22]. [c.356]

    Как правило, механизмы гормональной регуляции многоступенчаты. Воздействие гормонов на О.в. осуществляется через клеточную мембрану, во мн. случаях посредством активирования аденилатциклазной системы (см. Аденилатциклаза). Обратные связи в эндокринной системе часто замыкаются через нервную систему. При этом нервная система, получая сигналы из внеш. среды или от внутр. органов, управляет железами внутр. секреции. Напр., гипоталамус по сигналам от центр, нервной системы, передаваемым гормонами-медиаторами (напр., норадренали-ном, ацетилхолином), секретирует пептидные нейрогормоны (релизинг-факторы), разрешающие секрецию гормонов гипофиза. Последние стимулируют секрецию гормонов периферич. эндокринными железами. Эти гормоны влияют на О.в. в соответствующих органах и тканях т. обр., чтобы компенсировать изменения во внутр. среде или подготовиться к возможным ее изменениям, прогнозируемым центр, нервной системой (напр., при стрессовых ситуациях). Гипо-таламо-гипофизарная система, в частности, играет центр, роль в регуляции водно-солевого обмена животных (см. Вазопрессин, Окситоцин). [c.317]

    Переработка ванадиевых шлаков хлорированием. Хлорировать ванадиевые шлаки газообразным С 2 можно в расплаве хлоридов щелочных металлов. Метод широко применяется в производстве магния и титана и во многих случаях предпочтительнее хлорирования брикетированной шихты. При хлорировании в солевом расплаве осуществляется хороший контакт между хлором и хлорируемым объектом за счет энергичной циркуляции твердых частиц в газожидкостной системе хлор— расплав. Механизм хлорирования в солевом расплаве недостаточно изучен. Решающим фактором, который определяет степень хлорирования компонентов, являются кинетика протекающих процессов на границе раздела фаз и скорость удаления образующихся хлоридов из расплава. Процесс напоминает кипящий слой, причем пылеунос незначителен, так как частицы материала смочены расплавом. Хлорирование в солевом расплаве сравнительно легко осуществимо, высокопроизводительно. Применительно к ванадиевым шлакам этот процесс имеет то преимущество, что образующиеся хлориды железа и алюминия связываются хлоридами щелочных металлов в малолетучие соединения типа MeFe l4 и MeAl l4, давление пара кото-)ых во много раз меньше давления пара индивидуальных хлоридов [21]. [c.28]

    Длит, хранение переработанных Р. о. (десятки лет) ведется в траншеях, наземных или неглубоких подземных инженерных сооружениях, снабженных системами контроля за миграцией радионуклидов. Захоронение (на сотни лет) проводят в материковых геол. структурах (подземных выработках, соляных пластах, естеств. полостях) и на дне океана в сейсмически неопасных районах. Как теоретически возможное захоронение Р. о. рассматривается превращение (трансмутация) долгоживущих радионуклидов в короткоживущие путем облучения в реакторе или на ускорителе (протонное и 7-выжигание). Выбор вида захоронения зависит от уд. активности и радионуклидного состава Р. о., степени герметизации упаковок и вероятной продолжительности захоронения. Механизмы миграции радионуклидов из мест хранения (или захоронения) в окружающую среду м. б. разными, осн. причина-вьпцелачивание радионуклидов из упаковок и разрушение контейнеров водой. Скорость выщелачивания считается приемлемой на уровне 10 -10 г/см в сутки, что обеспечивает хранение в течение неск. тысяч лет без загрязнения окружающей среды выше допустимых уровней. Согласно Лондонской конвенции по предотвращению загрязнения моря сбросами отходов и других материалов 0972), запрещен сброс в океан отработавшего ядерного топлива, а также нек-рых др. видов Р. о. с уд. активностью, превышающей 5 10 Бк/кг (а-излучатели), 2 10 Бк/кг (р-и у-иэлучатели с периодом полураспада более 1 года, кроме трития), 3-10 Бк/кг (для трития и р- и у-излучателей с Т. , менее 1 года). В настоящее время 6 ч. высокоактивных P.O., образующихся при переработке ядерного топлива в разл. странах, хранится либо в виде жидкостей (кислых или щелочных), либо в виде солевых концентратов в резервуарах из нержавеющей стали (кислые р-ры) или из низкоуглеродистой стали (щелочные р-ры). [c.165]

    В настоящее время еще не определены наиболее эффективные типы замедляющих добавок к соляной кислоте, а механизм их действия известен в общих чертах. Первоначально целью исследования было углубленное изучение механизма действия известных кислотных составов. Согласно литературе, эффективными добавками к соляной кислоте являются хлорид алюминия (алюмохлорид) [217,310], солевые растворы [311], силикат натрия [296], лигносульфонаты [298], катионактивные ПАВ (КПАВ) [312,313] и гидрофобизаторы [192]. [c.172]

    Каким образом присоединение О2 к гемовому железу вызывает конформационное изменение гемоглобина Как указано в гл. 10 (разд. Б.4), при связывании с кислородом атом железа в геме, по-видимому, смещается в плоскости гемогруппы приблизительно на 0,06 нм [73]. Это смещение передается через гистидин F-8, и спираль F смещается в сторону гема в результате происходит изменение третичной структуры, приводящее к ослаблению водородных связей в области а1р2-контактов и солевых мостиков между субъединицами. Несмотря на тщательные рентгеноструктурные исследования, детали механизма, инициирующего конформационные изменения при присоединении О2, остаются неясными. Необходимо иметь в виду, что разрешение, которое удается получить при рентгеноструктурном исследовании кристаллов белков, позволяет установить локализацию легких атомов с достаточной точностью, в результате чего механизм передачи кооперативных эффектов не поддается непосредственному изучению и его приходится выяснять, исходя из изменений третичной структуры субъединиц при атшеплении лиганда от Р(т. е. окси-)- или при присоединении его [c.307]

    Подтверждением предложенного механизма может служить тот факт, что при проведении работ по глушению скважин на Суторминском, Холмогорском и Карамовском месторождениях водными и солевыми растворами с водорастворимым КПАВ ИВВ-1 наблюдалась следующая закономерность. В скважинах с параметрами обводненности до глушения в пределах от О до 40 % после глушения обводненность сохранялась прежней или имела тенденцию к уменьшению, а при обводненности до глушения от 42 до 99 % либо также сохранялась прежней или имела обратную тенденцию к увеличению. Вместе с тем, в тех случаях, когда обводненность не изменялась или уменьшалась (при исходной < 40 %) дебиты нефти увеличивались или также не изменялись. Но при увеличении дебита нефти не происходило увеличения дебита воды, то есть повышение дебита по жидкости в целом происходило только за счет увеличения дебита нефти. Напротив, в тех случаях, когда обводненность не изменялась или увеличивалась (при исходной > 40 %), в первом случае либо все оставалось прежним, либо могло происходить одновременное увеличение дебита как нефти, так и воды. А во втором случае чаще при неизменном дебите воды происходило уменьшение дебита нефти. [c.97]


Библиография для Солевые механизм: [c.335]   
Смотреть страницы где упоминается термин Солевые механизм: [c.81]    [c.281]    [c.281]    [c.281]    [c.284]    [c.89]    [c.412]    [c.57]    [c.165]    [c.53]    [c.53]    [c.128]    [c.129]    [c.170]    [c.177]    [c.228]    [c.445]    [c.755]    [c.543]    [c.261]   
Карбониевые ионы (1970) -- [ c.184 ]




ПОИСК







© 2025 chem21.info Реклама на сайте