Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризуемость и полярная энергия

    Если молекула В не полярна, но способна к поляризации при контакте с молекулой-диполем А (рис. 11, б), то в ней возникает индуцированный (наведенный) диполь того же направления и с тем большим моментом, чем выше поляризуемость а. Энергия индукционного взаимодействия определяется равенством [c.34]

    Согласно первой теореме подобия, процессы и явления в трех рассматриваемых категориях должны быть общими и пропорциональными [65]. В нашем случае соблюдается подобие химических, физических, физико-химических и электрохимических процессов и явлений. Так, очевидно, что основой ПИНС, как и основой любых нефтепродуктов, является химическое строение веществ, стерические факторы, полярность и поляризуемость молекул, энергии основных химических связей (ковалентная, координационная, ионная связь) и молекулярные взаимодействия — электроно-донорно-акцепторные (эда-взаимодей-ствия), комплексы с переносом заряда (кпз), водородные связи, взаимодействия, обусловленные силами Ван-дер-Ваальса (индукционное, ориентационное, дисперсионное взаимодействие), комплексы свободных стабильных радикалов (кср), а сле- [c.41]


    Химическая связь характеризуется длиной, полярностью, поляризуемостью и энергией. Ковалентная связь имеет также определенную направленность. [c.23]

    Химическая связь характеризуется длиной, полярностью,, поляризуемостью и энергией. Ковалентная связь имеет также определенную направленность. Длину и направленность связей наиболее часто определяют электронографическим или рентгенографическим методом. Полярность связи может быть определена из величии дипольных моментов или по спектральным данным. Поляризуемость отдельных связей определяется по спектральным данным. [c.23]

    Ковалентная химическая связь характеризуется длиной, направленностью, полярностью, поляризуемостью и энергией. [c.22]

    Дебай (1920) рассмотрел энергию дополнительного взаимодействия, возникающего в результате притяжения между полярной молекулой и диполями, индуцированными ею в соседних молекулах. В случае молекулы с дипольным моментом цв, окруженной на расстоянии г молекулами с поляризуемостью а, энергия Дебая определяется выражением [c.101]

    Энергия адсорбции полярных молекул на неполярном адсорбенте, При адсорбции полярных молекул на неполярном адсорбенте постоянный дипольный момент молекулы адсорбата поляризует атомы адсорбента, т. е. индуцирует в них электрические моменты. В результате возникает индукционное притяжение, которое добавляется к дисперсионному. В зависимости от положения и величины диполя в молекуле адсорбата и поляризуемости адсорбента энергия индукционного взаимодействия может достигать нескольких ккал/моль. [c.466]

    Теорию химических связей, которая описана в двух предыдущих главах, можно проще всего применить при рассмотрении физических свойств молекул в их основных электронных состояниях. Этому вопросу посвящена настоящая и некоторые последующие главы. Из таких свойств будут рассмотрены электрическая полярность, электрическая и диамагнитная поляризуемости, внутренняя энергия, геометрия и упругость молекул. Указанные свойства не могут быть рассмотрены без обсуждения ароматических свойств, поэтому начало гл. IV следует рассматривать как продолжение настоящей. В гл. IV также обсуждаются вопросы напряжения в кольце и другие факторы, влияющие на внутреннюю энергию. Все выводы относятся к основным электронным состояниям, однако в связи с вопросом об электрической поляризуемости основных состояний приходится упоминать и возбужденные состояния. Рассмотрение физических свойств возбужденных состояний и в связи с этим электронных переходов и явлений цветности — поглощения света, флуоресценции и фосфоресценции — увело бы нас слишком далеко от темы, и поэтому в данной книге не приводится. [c.102]


    В отличие от полярности, поляризуемость молекул определяется динамическими эффектами которые возникают, когда на атомы, соединенные в молекуле а-связью, воздействуют другие полярные молекулы, ионы или электрические поля, / -эффект играет важную роль в процессах адсорбции и хемосорбции ПАВ на металлических поверхностях, несущих значительные заряды. Имеет особое значение тот факт, что 1а- и / -эффекты меняются в противоположных направлениях. Чем более полярна связь атомов, тем менее она поляризуема, т. е. чем выше разность электроотрицательностей атомов в молекуле, тем больше / -эффект и тем меньше / -эффект. Например, энергия связи С—Р выше, чем у связи С—I, но последняя легче поляризуется. [c.200]

    Обычно при расчетах полярность и поляризуемость молекул определяют в зависимости от диэлектрической проницаемости, молекулярной массы и плотности ПАВ и растворителя. Однако применительно к маслорастворимым ПАВ эти расчеты оказываются недостаточно точными, поскольку такие ПАВ, попадая в малополярную среду, принимают участие в межмолекулярных взаимодействиях между собой и средой, а энергия этого взаи-. модействия может быть весьма значительной. Поэтому для определения дипольного момента предлагают определять относи- [c.202]

    Дисперсионное взаимодействие происходит между молекулами всех, веществ, одинаковыми или различными, полярными или неполярными. Оно практически полностью определяет взаимное притяжение молекул в веществах неполярных, со слабо поляризуемыми молекулами. В табл. 8 указаны сравнительные значения этих трех видов энергии молекулярного взаимодействия для некоторых веществ. [c.88]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Например, при переходе от гексана к нитробензолу скорость реакции возрастает в 1380 раз. Причины медленного течения реакций в растворах могут быть разными и не всегда поддаются учету. Образование неустойчивых промежуточных соединений молекул растворителя с молекулами реагирующих веществ может ускорить реакцию, если при этом уменьшается энергия активации. Наименьшими являются скорости реакций в алифатических углеводородах, затем идут галоидопроизводные алифатических углеводородов и наибольшей скоростью обладают реакции в кетонах и спиртах, что можно связать с различной полярностью и поляризуемостью молекул этих веществ. [c.352]

    При индукционном взаимодействии в неполярной молекуле, характеризующейся нулевым значением постоянного дипольного момента, электрическое поле полярной молекулы может индуцировать диполь с моментом, не равным нулю. При этом неполярная молекула становится индукционно-полярной и между ними возникает индуцированное взаимодействие. Чем выше поляризуемость молекулы а, тем больше величина возникающего индуцированного момента. Индуцирование неполярной молекулы зависит от напряженности электрического поля полярной молекулы, а поэтому энергия Еут этого взаимодействия не зависит от температуры  [c.9]

    Охарактеризуйте длину, энергию, полярность и поляризуемость связей С—Р, С—С1, С—Вг, С—I, С—Н. Сравните реакционную способность СНз—Р, СНз—С), СНз—Вг, СНз—I в условиях реакции гидролиза. [c.42]

    Индукционная составляющая возникает при взаимодействии полярной и неполярной молекул, например, НС1 и С1з. При этом полярная молекула поляризует неполярную, в которой появляется (индуцируется) наведенный дипольный момент. В результате возникает диполь-дипольное притяжение молекул. Энергия индукционного взаимодействия тем больше, чем больше дипольный момент полярной молекулы и чем больше поляризуемость неполярной. Поляризуемость молекул — это мера смещения зарядов в молекуле в электрическом поле заданной напряженности. Поляризуемость резко увеличивается с увеличением размеров электронной оболочки. Например, в ряду молекул НС1, НВг и HI дипольный момент уменьшается, однако температуры плавления и кипения веществ увеличиваются, что связано с увеличением поляризуемости молекул. [c.153]

    Связи характеризуются длиной, энергией, пространственной направленностью, поляризуемостью и полярностью. [c.31]

    Энергия индукционного взаимодействия У д, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя определяется направлением постоянного диполя. Энергия / д тем больше, чем выше поляризуемость неполярной молекулы и момент диполя полярной молекулы. Индукционное взаимодействие наблюдается при растворении полярных веществ в неполярных жидкостях. [c.236]


    Вклады специфических межмолекулярных взаимодействий можно оценить также, используя зависимость начальных (при л О) теплот адсорбции д[ различных веществ цеолитом от поляризуемости их молекул а, определяющей в основном неспецифические взаимодействия адсорбат — адсорбент. Из рис. 2.7 видно, что начальные теплоты адсорбции неполярных молекул — н-алканов и цикло-нента на — лежат на одной прямой, а теплоты,адсорбции полярных молекул фурана и тетрагидрофурана лежат много выше. Соответствующие значения А51 (37 и 76 кДж/моль) равны вкладу энергии специфических межмолекулярных взаимодействий в теплоту адсорбции этих соединений. [c.35]

    Важными характеристиками ковалентной связи, влияющими на свойства вещества, являются длина, энергия, насыщаемость, направленность, полярность, поляризуемость связи, валентный угол, гибридизация орбиталей. [c.65]

    Нам знакомо уже несколько характеристик ковалентных связей их длина, полярность и поляризуемость. Эти сведения надо дополнить еще одной важной характеристикой — энергией связи. [c.85]

    Длины, энергии, полярности и поляризуемости ковалентных связей [c.86]

    В табл. 1 дается характеристика связей различных типов . Помимо геометрических параметров — длин связей и валентных углов, в таблице приведены и другие характеристики — энергии связей, их полярности и поляризуемости. Эти последние формально не имеют отношения к предмету стереохимии, фактически же весьма важны при любом теоретическом рассмотрении свойств молекул. [c.17]

    В табл. 16 также обращает на себя внимание нулевая конформационная энергия столь объемистой группы, как Н Вг. Это объясняют большой длиной связи углерод — ртуть и легкой поляризуемостью атома ртути. Определенную роль играет, вероятно, и обращенная полярность этой связи с ее б+ на атоме ртути, в то время как в большинстве других случаев ключевой атом несет отрицательный заряд. [c.341]

    Каждой химической связи можно дать точную количественную характеристику энергию связи (см. 1.12), геометрические параметры — длины связей и валентные углы, а также электронные параметры — полярность и поляризуемость ( 1.12). [c.226]

    Индукционное взаимодействие осуществляется между полярной и неполярной молекулами. Под влиянием электростатического поля полярной молекулы в неполярной молекуле наводится (индуцируется) временный дипольный момент, а затем обе молекулы взаимодействуют как диполи. Энергия индукционного взаимодействия не зависит от температуры. Она возрастает с увеличением поляризуемости молекул. [c.112]

    Энергия поляризационного взаимодействия между молекулами примерно на порядок меньше энергии лондоновского и дипольного взаимодействия. Например, для двух молекул пиридина при Я = 2 нм, о 1,6- 10 кк Т при 300 К- Тем не менее, поляризационное взаимодействие между молекулами оказывает существенное влияние на свойства полярных жидкостей. Полярная молекула поляризует всю окружающую ее массу молекул и создает (индуцирует) в этом окружении некоторый дипольный момент А[х, величина которого зависит от поляризуемости и диэлектрической проницаемости среды. Поляризация окружающей среды создает поле ( реактивное поле) в том элементе объема, где находится полярная молекула. В результате происходит дополнительная поляризация полярной молекулы. Реакция окружающей среды на присутствие в ней полярной молекулы приводит к появлению реактивного поля, действующего на молекулу. В итоге возникает существенный дополнительный вклад в энергию взаимодействия полярных молекул со средой. Нетрудно понять, что этот вклад пропорционален числу молекул в единице объема. Он значителен в жидкой фазе и мал в разреженных парах. Влияние этого фактора будет рассмотрено в гл. П. [c.29]

    Химическая связь характеризуется длиной, полярностью, поляризуемостью и энергией. Ковалентная связь имеет также определен-ную направленность. Длину и направленность связей наиболее часто определяют электронографическим или рентгенографическим методом. Полярность связи может быть определена из величин дипсль-ных моментов или по спектральным данным. Поляризуемость отдельных связей определяется по спектральным данным. Поляризуемость молекул характеризуется величиной молекулярной рефракции. Энергия связей определяется по теплоте образования химических соединений из атомов, т.е. термохимическим путем, или из спектральных данных. [c.22]

    Другая общая причина отклонений, как уже отмечалось выше, состоит в том, что представление электрической энергии полярного эффекта в виде произведений двух величин, которое приводит к пропорциональным соотношениям как раз потому, что оно является таковым, сильно идеализировано. В принципе полярная энергия должна выраиоться суммой произведений, так как необходимо принимать во внимание, что свойства поляризации и поляризуемости пе зависят друг от друга. Из данных, полученных для этой и других реакций, катализируемых кислотами или основаниями, следует, что значительные отклонения наблюдаются в том случае, когда между местом локализации структурных изменений и реакционным центром имеется система сопряженных связей. Именно при таких обстоятельствах можно ожидать значительных эффектов поляризуемости, которые приводят к появлению новых дополнительных энергетических членов. [c.993]

    В табл 1 приведены величины теплот смешения анилина с различными веществами по , а такке характеристики этих веществ - поляризуемость, полярность, плотность энергии когезии, основность по и электрофильность по . При обработке данных ддк всех 20 точек по линейному пятипараметровому [c.160]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Связь между углеродом и фтором хотя и полярна, но мало поляризуема. Более того, по мере накопления атомов фтора в молекуле ее полярность уменьшается. Одновременно уменьшается длина связи С—F и увеличивается ее энергия [3—5]. Энергия связи С—F весьма велика (498 кДж/моль), и эта связь не рвется по гомолитическому механизму, не расщепляется кислородом при высокой температуре [6]. Единственным источником радикалов, инициирующих цепной деструктивный распад перфторнрованных углеводородов, является термический разрыв углерод-углеродной связи. [c.502]

    Ароматические углеводороды масляных фракций растворяются как в парафино-нафтеновых углеводородах, так и в полярном растворителе, за счет действия однотипных дисперсионных сил. В последнем случае при контакте с неполярной частью молекул растворителя ароматические углеводороды растворяются в нем вследствие дисперсионного притяжения при соприкосновении с функциональной группой в молекулах этих углеводородов индуцируется дипольный момент и растворение происходит в результате ориентации диполей. Следовательно, преимущественное растворение ароматических углеводородов в шолярном растворителе объясняется большей энергией притяжения диполей по сравнению с энергией взаимодействия неполярных соединений и, кроме того, наличием дисперсионных сил между неполярной частью молекул распворителя и молекулами этих углеводородов. В связи с вышеизложенным растворимость ароматических углеводородов в полярных растворителях при прочих равных условиях уменьшается по мере увеличения длины боковых цепей и усложнения их структуры (рис. 6), так как при этом затрудняются индуцирование в их молекулах дипольного момента и ассоциация с молекулами растворителя [5]. В этом случае растворение является в основном следствием дисперсионного взаимодействия молекул. Повышение степени цикличности ароматических углеводородов приводит к увеличению их растворимости в результате большей поляризуемости таких м олекул, и энергия притяжения диполей превышает энергию дисперсионного цритяжения молекул. [c.49]

    Самое малое поверхностное натяжение оказывается у сжиженных инертных газов, симметричные молекулы которых обладают ничтожной поляризуемостью. Поверхностное натяжение органических жидкостей возрастает с увеличением их полярности, Обращает на себя внимание большая величшш поверхностного натяжения воды по сравнению с другими жидкостями. Это связано со склонностью воды к образованию водородных связей. Еще выше поверхностное натяжение расплавленных солей и металлов, для которых характерна ионная связь. Поверхностная энергия твердых тел, определенная косвенными методами, оказалась существенно большей, чем в случае жидкостей. [c.190]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры. Последнее связано с тем, что ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Величина 7 д тем значительнее, чем выше поляризуемость неполярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, в растворах полярных вешеств в неполярных, например ацетона в СС14 и других подобных смесях, и существенно только для молекул со значительной поляризуемостью. К ним, в первую очередь, относятся молекулы с сопряженными связями. Индукционное взаимодействие не аддитивно. Это становится ясным, если рассмотреть неполярную частицу в поле двух симметрично расположенных зарядов. Каждый из них, действуя сам, вызвал бы индукционный эффект, но совместное их действие создает два диполя, равных по величине и направленных противоположно, т. е. не понижает энергию. [c.258]

    Из (49.20) видно, что основная компонента энергии, энергия электростатическая —(e ifs ) спадает пропорционально только второй степени расстояния, т. е. значительна даже на больших расстояниях. Для системы однозарядный ион — молекула воды на расстоянии 3 10 м она больше 40 кДж/моль без учета поляризуемости. Поэтому ион-дипольное взаимодействие играет большую роль в растворах электролитов в полярных растворителях воде, спиртах, аммиаке и т. п. Особенно велико оно для ионов с заметной поляризуемостью (Ag , ТГ) и высоким зарядом (Са , и др.). Во всех этих растворах образуются довольно стабильные продукты взаимодействия иона с несколькими молекулами растворителя — сольваты (гидраты в водных растворах). Они особенно существенны для катионов, поскольку малый радиус катиона, согласно (49.20), способствует стабильности сольвата (гидрата). Анионы, как более крупные частицы, менее сольватирораны. [c.265]


Смотреть страницы где упоминается термин Поляризуемость и полярная энергия: [c.133]    [c.136]    [c.71]    [c.351]    [c.133]    [c.136]    [c.113]    [c.257]    [c.349]   
Теоретические основы органической химии (1973) -- [ c.1006 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризуемость



© 2025 chem21.info Реклама на сайте