Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризуемость молекулы в основном состоянии

    Уменьшение констант скоростей реакций нуклеофильного замещения у атома фосфора нря замене атома кислорода на серу в фосфорильной группе объясняется различной поляризуемостью соединений, влиянием сольватации, стерических и других факторов электронная плотность на атоме фосфора в молекулах основного состояния в меньшей мере влияет на реакционную способность ФОС. [c.408]


    В большинстве случаев величину ц, являюш уюся (с точностью ДО множителя порядка единицы) дипольным моментом молекулы в основном состоянии, оказывается возможным определить по измерениям диэлектрической проницаемости растворов. Кроме того, независимо можно определить или оценить поляризуемость молекулы в основном состоянии и предположить, что поляризуемость в основном состоянии примерно равна поляризуемости в возбужденном состоянии. Зная л, по формуле (34) для В мо>кно найти — компоненту вектора в направлении л. В большинстве случаев эта величина оказывается довольно малой. Можно думать поэтому, что и величина тоже мала. Так что члены, связанные с в формулах (35)—(39), можно отбросить. [c.290]

    Несоответствие между распределением электронной плотности в молекулах основного состояния и реакционной способностью, по-видимому, может обусловливаться несколькими причинами 1) различной поляризуемостью соединений, 2) влиянием сольватации основного и переходного состояний, 3) пространственными и другими факторами. [c.127]

    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    Некоторые исследователи пытались четко разделить на два типа эффекты, обусловливающие поляризацию молекул в основном состоянии и приводящие к изменению характера распределения электронов. Один из них действует в условиях приближения атакующего агента, тогда как другой проявляется в переходном состоянии, представляющем собой переходную форму между реагирующими веществами и продуктами реакции. Эти изменяющиеся во времени факторы были названы по аналогии с упоминавшимися выше постоянно действующими эффектами соответственно индуктомерным и электромерным эффектами. Можно считать, что такие эффекты обусловливают скорее поляризуемость, чем поляризацию, поскольку распределение электронов возвращается к распределению, характерному для основного состояния атакованной молекулы, если любой из реагирующих компонентов удален до того, как реакция прошла, или если реально возникшее переходное состояние распадается с выделением исходных продуктов. [c.41]


    Необходимо еще раз подчеркнуть, что мезомерия отражает распределение электроиов в молекуле, а не их движение. Это (статическое) распределение электронов характеризует прежде всего энергию основного состояния молекулы (низкий энергетический уровень). Однако прн химической реакции электроны должны быть определенным образом перегруппированы, и в этом случае мезомерия не может уже ничего объяснить. Для этого надо оценивать поляризуемость ) данной электронной системы, которая характеризует подвижность электронов (т. е. является динамической величиной). [c.203]

    Изменение электронной структуры атомов и молекул при переходе из основного в В. с. приводит к изменению их геометрии, т.е. равновесных расстояний между атомами в молекулах, дипольных моментов и поляризуемости, хим. св-в. Электронные B. . могут быть стабильными или диссоциативными (нестабильными). Для первых характерно наличие полного минимума на поверхности потенциальной энергии, для вторых-монотонное понижение энергии при увеличении расстояния между к.-л. атомами или атомными группами. Изменение структуры молекулы при переходе в B. . можно проиллюстрировать на примере формальдегида. Его основное состояние является плоским, длина связи С—О составляет 0,122 нм. Синглетное и триплетное п,п В. с.-пирамидальные с углом между С—О связью и плоскостью СН J-группы 20 и 35 соотв. длина С—О связи увеличивается до 0,132 и 0,131 нм дипольный момент молекулы в основном состоянии 2,30, в возбужденном синглетном-1,60. [c.409]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]

    Значения молекулярной рефракции химических связей, атомов, молекул и ионов могут быть использованы для качественной оценки их поляризуемости. Поляризуемостью молекулы (иона, связи) называют способность ее к поляризации, т, е. к изменению положения ядер и состояния электронного облака под влиянием внешнего электрического поля. В основном происходит электронная поляризация. [c.39]

    По мнению автора, не имеет смысла интерпретировать эти реакции, оперируя только статическими факторами, такими, как энергия основного состояния молекулы. Поэтому в данной книге делается упор на динамические факторы, и особенно часто для объяснения механизмов привлекается поляризуемость системы. [c.9]

    Вводя тензоры поляризуемости свободной молекулы растворенного вещества в состоянии / и свободной молекулы растворителя в основном состоянии [c.187]


    Ингольд с сотрудниками отмечают, что различия в поляризуемости изотопных молекул обусловлены тем, что величины колебательных силовых постоянных для низших возбужденных состояний, как правило, меньше, чем для основных состояний. В разд. П1Б будет показано, что подобные изменения силовых постоянных связаны с относительным распределением заряда в основном и возбужденном состояниях, а также с ангармоничностью функции потенциальной энергии в основном состоянии. Поэтому при качественном обсуждении данных изотопных эффектов, так же как и при обсуждении эффектов, наблюдаемых в дипольных моментах, можно в конечном счете ограничиться рассмотрением средней конфигурации и среднеквадратичной амплитуды. [c.105]

    Наиболее ранние результаты опубликованы Коулсоном и Лонге-Хиггинсом [29]. Эти авторы пытаются предсказать реакционную способность различных центров я-системы путем расчета различных характеристик (плотность заряда, порядки связей, поляризуемость свободной валентности) основного состояния молекулы. Эти характеристики должны при таком подходе влиять на реакционную способность по отношению к различным типам реагентов (электрофилам, свободным радикалам, нуклеофилам). [c.128]

    Итак, по закону Стокса спектр флуоресценции лежит с длинноволновой стороны от самой длинноволновой полосы поглощения, а относительная интенсивность его колебательных компонент определяется принципом Франка — Кондона. В данном разделе мы дадим объяснение уже упоминавшемуся несовпадению 0-0-переходов при поглощении и при испускании. Как в основном, так и в электронно-возбужденном состоянии молекула соль-ватирована за счет диполь-дипольного взаимодействия с молекулами растворителя. Степень сольватации определяется в конечном итоге распределением электронной плотности в молекулах, от которого зависит величина дипольного момента — либо постоянного (для полярных молекул), либо наведенного (для неполярных молекул). В возбужденном состоянии молекула имеет иное распределение электронной плотности, чем в основном состоянии. Поэтому при возбуждении изменится постоянный дипольный момент и (или) поляризуемость, от которой зависит наведенный дипольный момент следовательно, должна измениться и степень сольватации. Однако поглощение света происходит так быстро, что в жидкости при комнатной температуре молекула не успевает изменить ориентации и сразу после возбуждения оказывается в неравновесном состоянии сольватации, имеющем большую энергию, чем равновесное (переход аЬ на рис. 4). Время жизни в возбужденном состоянии достаточно велико, и еще до испускания света происходит релаксация в равновесное состояние с с меньшей энергией. Аналогично при йену- [c.22]

    Следует отметить, что в возбужденном состоянии размеры электронной оболочки молекулы больше, чем в основном состоянии. Поэтому поляризуемость при возбуждении увеличивается, и даже при постоянном дипольном моменте это неизбежно должно увеличить степень сольватации и привести к появлению небольшой, но вполне ощутимой разности 0-0-переходов при поглощении и при испускании. [c.24]

    Хотя споры о сверхсопряжении еш е продолжаются, можно все же сказать, что сверхсопряжение не должно быть существенным для основного состояния молекул. Вместо сверхсопряжения для объяснений постулируются различия в сольватации [62, 63], эффекты массы [64], эффекты отталкивания орбиталей [65] и эффекты поляризуемости. Вероятно, многие причины действуют совместно. [c.84]

    При отсутствии специфических взаимодействий сдвиг уровней определяется действием ориентационно-индукционных и дисперсионных сил и может быть описан уравнениями, включающими показатели преломления и диэлектрической проницаемости среды. Параметрами, зависящими от природы молекулы и определяющими изменение спектра поглощения, являются динольный момент и поляризуемость в возбужденном и основном состоянии молекулы. [c.218]

    Разность энергий стабилизации (энергий ММВ) основного и возбужденного электронных состояний, определяющую величину сдвига полосы, можно определить как работу поля F межмолекулярных сил, действующих на молекулу в конденсированной среде, при изменении дипольного момента молекулы от Цй в основном состоянии молекулы до Це в возбужденном состоянии и поляризуемости от до ае.  [c.44]

    Приведенные выше данные позволяют сделать вывод о том, что реакционная способность соединений с фосфорильной и тионфосфорильной группами в большей мере зависит от поляризуемости, влияния сольватации, стерических факторов, чем от дефицита электронной плотности на атоме фосфора в молекулах основного состояния. [c.130]

    Растворимость углеводородов в полярных растворителях зависит от способности их молекул поляризоваться, что связано со структурными особенностями молеку л углеводородов. Вследствие малой поляризуемости молекул твердых углеводородов индуцированные дипольные моменты этих соединений евелики, поэтому растворение твердых углеводородов в полярных растворителях происходит в основном под действи м дисперсионных сил. Растворимость остальных компонентов масляных фракций является результатом индукционного и ориентационного взаимодействий, причем действие полярных сил настолько велико, что даже при низких температурах эти компоненты остаются в растворенном состоянии. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил усиливается в результате при достаточно низких температурах твердые углеводороды выделяются из раствора и благодаря наличию длинных парафиновых цепей сближаются с образованием кристаллов. [c.156]

    И) см ) связана с колебаниями атомов в молекуле. Эксперимеп-I./.Mi.no эта область исследуется двумя методами методом инфракрасной спектроскопии (ИК-спектроскопии) и при помощи спектров К(/мб пационного рассеяния (КР-спектроскопии). Физическая природа этих спектров различна. ИК-спектры поглощения обусловливаются переходами между двумя колебательными уровнями молекулы, находящейся в основном электронном состоянии. Спектры КР связаны с поляризуемостью молекулы. [c.18]

    Первое слагаемое в правой части уравнения (6.2) представляет собой разность между энергией, расходуемой на образование полости в растворителе для молекулы в основном состоянии, и энергией, расходуемой на образование полости в растворителе для молекулы, находящейся в возбужденном состоянии Франка — Кондона. Так как в большинстве электронных переходов размеры молекул при возбуждении изменяются незначительно, обычно принимают, что —И се = 0. Второе слагаемое отражает дисперсионное взаимодействие между молекулой растворенного вещества и окружающими ее молекулами растворителя, приближенно равное = —ксаОед, , где /)ед — парамет р, практически не зависящий от природы растворителя. Согласно уравнению (6.4), дисперсионные взаимодействия определяются показателем преломления п растворителя. Третье и четвертое слагаемые уравнения (6.2) описывают изменение энергии, обусловленное уменьшением или увеличением дипольного момента молекулы растворенного вещества при возбуждении. Величина третьего слагаемого определяется изменением дипольного момента и в еще большей степени показателем преломления растворителя, а величина четвертого слагаемого зависит от дипольного момента основного состояния, изменения дипольного момента при возбуждении и диэлектрической проницаемости растворителя. Наконец, пятое слагаемое определяется изменением поляризуемости ( е—а ) Молекул растворенного вещества при возбуждении.  [c.429]

    Установление колебательных правил отбора осуществляется обычным способом. Произведение представлений исходного и конечного состояний должно содержать в своем разложении представление оператора перехода. В случае колебаний исходным состоянием является основное состояние, обладающее симметрией гамильтониана для основного состояния. Оно должно быгь полносимметричным. Вывод правила отбора основывается на том, что разрешенный колебательный переход должен происходить в возбужденное колебательное состояние, которое обладает трансформационными свойствами какой-либо компоненты оператора перехода. Для обычного поглощения или испускания излучения (инфракрасная спектроскопия) речь идет о компонентах дипольного оператора. В группе С20 компоненты дипольного оператора преобразуются по представлениям Ль В1 или В2. Все эти типы симметрии колебаний молекулы воды отвечают разрешенным в инфракрасном спектре переходам. В спектроскопии комбинационного рассеяния оператором перехода является оператор поляризуемости, который преобразуется как квадрат дипольного оператора. Его компоненгы зависят от декартовых координат как х , г/ г , ху, хг и уг. Представления, по которым преобразуются эти компоненты, обычно тоже указываются в таблицах характеров. Для группы С20 имеются компоненты поляризуемости, которые преобразуются по каждому из ее пред-сгавлений. Следовательно, любой тип колебаний молекулы с [c.335]

    В спектре КР активны те нормальные колебания, при которых изменяется поляризуемость молекулы. Наиболее интенсивные полосы в спектре КР присущи неполярньш молекулам с ковалентными связями (например, Н , О , С1 ). Поскольку при обычных температурах возбужденные колебательные состояния заселены существенно меньше основного, то интенсивность антистоксовых полос оказывается заметно ниже, чем стоксовых (рис. 11.47). Полосы второго, третьего и более высоких порядков, а также полосы, отвечающие составным частотам, обычно малоинтенсивны и в спектре КР наблюдаются редко. С повышением иненсив-ности возбуждающего монохроматического света интенсивность полос КР возрастает. [c.288]

    Полезным введением, позволяющим лучше понять некоторые особенности теории, является рассмотрение примитивного кристалла , состоящего только из двух молекул, и выяснение того, как эти молекулы будут взаимодействовать друг с другом и какое влияние это взаимодействие окажет на спектр. Если молекулы находятся на достаточно далеком расстоянии друг от друга, т. е. грубо говоря, дальше, чем расстояние, при котором облака зарядов начинают перекрываться, то взаимодействие является в основном диполь-дипольным. Если обе молекулы находятся в основном состоянии, то энергия этого взаимодействия очень мала и зависит от поляризуемости молекул. Это может быть представлено с классической точки зрения как притяжение между колеблющимся диполем одной молекулы и наведенным им диполем другой молекулы. Величины наведенного момента и энергии его взаимодействия с основным моментом сильно зависят от расстояния Я, и энергия этого взаимодействия уменьшается пропорционально Это взаимодействие называется вандерваальсовским притяжением двух неполярных молекул. Оно играет также главную роль, если обе молекулы находятся в одном и том же возбужденном состоянии. Однако если одна молекула находится в основном состоянии, а другая в возбужденном, то результат получается другим. Взаимодействие между молекулами может привести в этом случае к обменному или резонансному возбуждению, и совершенно неизвестно, какая из молекул в действительности будет возбуждена в тот или иной момент времени. Резонанс возбуждения в некотором отношении похож на электронный резонанс в, если за отправную точку берется система из атома водорода в состоянии 15 и протона. При небольших расстояниях электрон резонирует между положительными центрами и может рассматриваться как обобществленный электрон. Одно из стационарных состояний системы является стабильным, а другое нестабильным по сравнению с разъединенной системой. Аналогия с резонансом возбуждения довольно близкая, так как для некоторых целей резонанс возбуждения может рассматриваться как резонанс экситона, или частицы возбуждения. Это также ведет к двум состояниям, одному стабильному и одному нестабильному, по отношению к разъединенным молекулам. Зависимость притяжения от расстояния при этом такая же, как зависимость притяже-вия собственных диполей, т. е. энергия его пропорциональна Действительно, это взаимодействие может быть описано в классическом приближении как взаимодействие собственных, а не наведенных диполей двух молекул. По величине эти диполи равны дипольному моменту перехода из основного состояния в рассматриваемое возбужденное состояние. [c.512]

    ПОСТОЯННЫЙ дипольный момент в основном состоянии и интенсивную полосу поглощения в ближней ультрафиолетовой области спектра химические вещества именно такого типа были выбраны потому, что для них влияние электрического поля на полосу поглощения велико, и поэтому экспериментально с ними легче иметь дело. Правда, недавние эксперименты сделали возможным изучение молекул с дипольными моментами порядка 2 дебаев в основном состоянии, и вероятно даже, что окажется возможным проводить измерения для молекул с еще меньшими дипольными моментами. Когда это станет возможным, предлагаемый здесь метод окажется весьма полезным при определении дипольных моментов состояний и моментов перехода. Кроме того, этот метод можно использовать для нахождения поляризуемостей в возбужденных состояниях [8, 9, 28], а также зависимостей моментов переходов от поля. Очень важно, что с помощью предлагаемого метода оказывается возможным получение данных для возбужденных состояний, поскольку до сих пор число методов, которые позволяют получать такого рода информацию, весьма ограничено. Получаемые с помощью предлагаемого здесь метода данные [c.291]

    Следует заметить, что случай Из несколько особый, так как при переходе от основного квозбужденному состоянию поляризуемость молекулы На меняется во много раз. В случае других много-электрониых молекул переход от основного к возбужденному состоянию ие столь разительно влияет на величину поляризуемости и следует ожидать, что качество мультипольной аппроксимации пе будет столь резко ухудшаться. [c.113]

    Свойства простого вещества. Атомы неона не могут образовывать обычные химические связи. Между нихми могут возникать лишь слабые взаимодействия типа ван-дер-ваальсовых сил, которые прямо пропорциональны поляризуемости и обратно пропорциональны потенциалам ионизации атомов. Поэтому неон — газ, имеет одноатомные молекулы, низкие температуры плавления (—249° С) и кипения (—246° С). Теплота парообразования, определяемая межатомными силами, невелика (1,84 кДж/моль) и силы межатомного притяжения легко преодолеваются. Слабые межатомные силы обусловливают легкость перевода неона в газообразное состояние, низкие температуры плавления и кипения и небольшую (всего в 3°) разницу между точками плавления и испарения. Высокая степень притяжения внешних электронов определяет большое значение энергий ионизации и невозможность получения положительных ионов. Полная занятость валентных электронных уровней указывает на невозможность присоединения электронов, а незанятые электронные уровни сильно отличаются по энергиям от основного состояния, и это свидетельствует о трудности изменения электронной структуры неона. Инертность благородных газов, таким образом, обусловлена особенностью электронной конфигурации. [c.240]

    Из интенсивностей полос скелетных колебаний кольца были рассчитаны также константы гетероатомов характеризующие их резонансный эффект в основном состоянии молекулы [175]. Соответствующие значения оказались равными 0 —0,20, 8 —0,17, 5е —0,18, НМе —0,23. Сильное различие между константами и о+ — еще одно свидетельство высокой поляризуемости пятичленных гетероколец, что отличает их от сравнительно малополяризуемых азиновых ядер. [c.112]


Смотреть страницы где упоминается термин Поляризуемость молекулы в основном состоянии: [c.3]    [c.407]    [c.217]    [c.184]    [c.92]    [c.234]    [c.280]    [c.284]    [c.280]    [c.280]    [c.284]    [c.37]    [c.35]    [c.467]    [c.128]    [c.173]    [c.356]    [c.208]    [c.235]   
Введение в молекулярную спектроскопию (1975) -- [ c.60 , c.91 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Молекул основное состояние

Молекулы основное

Молекулы состояние

Основное состояние

Поляризуемость

Поляризуемость молекулы



© 2024 chem21.info Реклама на сайте