Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Критическая точка, влияние химических реакций

    Своеобразие термодинамики критических явлений состоит в том, что в критической точке двойного раствора химические потенциалы компонентов не зависят от состава раствора [1]. Эта особенность термодинамики критических явлений оказывает решающее влияние на процессы, связанные с переносом вещества. Так как движущей силой изотермической диффузии является градиент химического потенциала [2 — 5], то превращение градиента химического потенциала в нуль в критической точке двойного раствора приводит к прекращению диффузии. Работы [6, 7, 8] установили на примере двойных жидких систем, что диффузия в критической точке двойного раствора практически прекращается, несмотря на наличие градиента концентрации. Прекращение диффузии, в свою очередь, оказывает существенное влияние на кинетику гетерогенных реакций, в которых участвует диффундирующее вещество. [c.54]


    Известно, что в процессах, протекающих в растворах, растворитель является не только средой, но и реагентом. Его роль, однако, столь сложна и неоднозначна, что пока еще не создана общая теория для описания поведения растворителя в химических реакциях и это понятно, поскольку понимание закономерностей влияния растворителя требует изучения очень большого числа систем с разных точек зрения. Весьма полезен был бы критический обзор известных данных, который отразил бы современное состояние методов, успешно используемых для аналитических целей. [c.7]

    Анализ полученных результатов, и сравнение их с данными по кинетике таких же реакций, протекающих в неподвижной среде, показывают, что струя играет роль переносчика химических реакций. Газодинамические явления практически не изменяют кинетических соотношений для изучаемых реакций и характерных интервалов продолжительности их отдельных стадий, а лишь в большей или меньшей степени растягивают эти реакции в пространстве. В то же время химические реакции, протекающие в плазменной струе, оказывают существенное влияние на динамику движения, т. е. температуру, плотность, вязкость струи, а следовательно, и ее скорость. Вследствие этого влияния начальная скорость потока газа должна быть выше некоторого критического значения. При очень малых скоростях значительное понижение температуры плазменной струи, сопровождаемое также значительным понижением скорости, может привести к нарушению режимов в струе. [c.54]

    Если 0 > т, то разброс вещества не влияет на протекание процесса детонации в осевой части заряда, и скорость детонации имеет максимальное значение, что наблюдается при й р- Если 0 < т, то волна разрежения достигает оси заряда до окончания химической реакции, которая в этом случае вследствие снижения давления и выброса непрореагировавшего вещества идет не до конца, что и сопровождается снижением скорости детонации. С уменьшением диаметра заряда влияние волны разрежения на реакцию в детонационной волне может стать столь большим, что распространение детонации станет невозможным. Это произойдет тогда, когда диаметр заряда станет меньше критического диаметра детонации данного ВВ. Принцип Ю. Б. Харитона позволяет приближенно оценить время реакции в детонационной волне т, которое для критических условий равно времени разброса [c.74]

    Применимость уравнений пограничного слоя. Настоящая глава посвящена влиянию одновременно протекающих процессов массообмена и химических реакций на теплообмен между поверхностью обтекаемого тела и реагирующим газовым потоком. Полученные здесь уравнения могут быть использованы для больщинства газовых смесей, когда числа Рг и Ье отличны от 1 и когда наряду с массообменом происходят химические реакции, включающие горение компонентов, попадающих в газовый поток в результате массообмена, и диссоциацию нагретых компонентов газового потока. Результаты этой главы с добавлением результатов, полученных в п. 4.8, применимы к окрестности критической точки затупленного тела, а результаты п. 5.И с учетом всего, что содержится в гл. 5, применимы к случаю плоской пластины. Достоверность этих результатов, однако, зависит от того, насколько применимы уравнения пограничного слоя к рассматриваемым проблемам. [c.142]


    Реакции в жидкой фазе могут протекать и в условиях ограниченной взаимной растворимости жидких компонентов. Если при этом существует одна или две (верхняя и нижняя) критические температуры растворения, то следует иметь в виду, что давление оказывает влияние как на величину растворимости, так и па эти критические температуры. Известно, например, что увеличение давления с атмосферного до 1000 атм повышает критическую температуру растворения смеси фенол — вода с 66 до 71°. Рассмотрим в связи с этим случай, когда в реакции участвует вещество, растворенное в обеих несмешивающихся или ограниченно растворимых друг в друге жидкостях. Для установления величины активности этого вещества в любой из фаз воспользуемся известным положением о равенстве значений химического потенциала вещества во всех фазах, находящихся в равновесии. Отсюда следует, что отношение активностей вещества в обеих смесях при постоянной температуре должно быть постоянным (закон распределения). С изменением давления над раствором активность растворенного вещества будет изменяться в соответствии с уравнением (I. 49). Значения парциальных мольных объемов его VI в различных растворителях могут оказаться разными, что приведет к различному росту активностей растворенного вещества в обеих фазах. Но эти активности, согласно закону распределения, должны быть при равновесии всегда пропорциональны друг другу следовательно, при высоком давлении будет происходить переход вещества из одной фазы в другую. [c.43]

    Мицеллярный катализ оказывает сильное влияние на скорости реакций. Мицеллы — это агрегаты с большим содержанием молекул мыла или детергента, довольно рыхло связанные преимущественно за счет гидрофобных (неполярных) взаимодействий. При увеличении концентрации детергента в водном растворе происходит постепенное изменение физико-химических свойств раствора поверхностного натяжения, плотности, pH и электропроводности. Однако наступает такой момент, когда изменения перестают быть плавными и при небольшом увеличении концентрации детергента какое-либо из свойств раствора резко меняется. Концентрация детергента, при которой наступает такой скачок, называется критической концентрацией ми-целлообразования (ККМ). Мицеллы обычно образуются в водном растворе полярные и неполярные группы находятся соответственно на поверхности и внутри мицелл. Известны и обращенные мицеллы, т. е. агрегаты поверхностно-активных веществ в неполярных растворителях, в которых полярные и неполярные группы расположены соответственно внутри и на поверхности мицелл. За счет неполярных взаимодействий мицеллы связывают множество органических субстратов, что приводит к ускорению химических реакций (или порой к их замедлению). Катализируемые мицеллами реакции обычно протекают на поверхности мицелл. Более того, мицеллярный катализ носит определенные ферментоподобные черты например, кинетика мицеллярных процессов подчиняется уравнению Михаэлиса— Ментен, и катализ характеризуется заметной стереоспецифичностью. Все это указывает на то, что мицеллы можно использовать для моделирования ферментативного катализа [22]. [c.337]

    Полученные граничные условия показывают, что коэффициенты каталитической активности поверхности к ю и в обгцем случае являются функциями не только температуры, давления и химического состава, но и диффузионных потоков компонентов. В [117] исследовался пример, когда такая зависимость сугцественно сказывается на теплообмене. Рассматривалось обтекание передней критической точки ионизованным азотом, в условиях, когда в пограничном слое сугцественно влияние процессов ионизации на переносные свойства, трение и теплообмен. В случае быстрых реакций адсорбции-десорбции атомов, а также быстрых реакций на поверхности с участием адсорбированных компонентов были получены граничные условия  [c.87]

    Были предприняты попытки использования этого явления для более эффективного гашения пламени в орошаемых огнепрегради-телях. Так как процессы срыва пленки жидкости с поверхности насадки, дробления и испарения пленки происходят во времени, то естественно было ожидать максимального эффекта на медленно горящих газах или взрывчатых смесях. Действительно, при гашении пламени ацетилена в огнепреградителе нанесение пленки жидкости на поверхность насадки оказалось очень эффективным. В этом случае внедрение капель жидкости, их дробление и испарение осуществляются частично в зоне химической реакции пламени, вследствие чего понижается температура реагирующего газа и разбавление его инертным веществом. Опыт показывает, что критический диаметр трубки увеличивается минимум в 10 раз (по сечению в 100 раз), т. е. с 8 до 80 тор при Рнач = 3 ama. Этот пример представляет наглядную иллюстрацию влияния химиче ских и газодинамических факторов на протекание процесса горения. [c.185]


    В то время закон Аррениуса, которому подчиняются скорости химических реакций, и лежащие в его основе предположения были настолько хорошо обоснованными, что не ощущалось ни-каксй необходимости следовать этой идее Нернста. На основании теории Аррениуса можно составить двухстадийную диаграмму. Если, однако, ввести в эту диаграмму любое количество мономолекулярных стадий, то это не повлечет за собой никаких последствий, которые можно было бы обнаружить экспериментально по скорости реакции, поскольку рассматривается изотермическая реакция, и, следовательно, можно прерывное изображение по Аррениусу заменить непрерывным посредством разделения одной большой стадии на большое число мелких стадий. Но это равносильно тому, что простая реакция рассматривается как диффузия различных частиц в реагирующую молекулу или в реагирующий комплекс молекул, если рассматриваемая реакция не является кинетически мономолекулярной. С этой точки зрения описания по Аррениусу и по Нернсту сливаются воедино. Можно также видеть, что такая трактовка почти соответствует предложенной в 1931 г. Эйрингом и Поляньи [20], которая затем разрабатывалась Эйрингом с сотрудниками, а также другими исследователями и получила название теории переходного состояния. Эта теория отличается от выдвинутой в 1915 г. статистико-механической теории Марселена [21] только применением квантовой механики вместо классической. В теории Марселена (теория критических комплексов) также отражено сильное влияние теории активных молекул, данной в статье Аррениуса в 1889 г. [22]. [c.155]

    Следует отметить, что в настоящее время накопился обильный экспе-() 1ментальный материал, в той или иной мере характеризующий способ-Н0СТ1. диаминов и дикарбоновых кислот, а также аминокарбоновых кислот и других мономеров к поликонденсации с образованием иолиамидои [1 — 3]. Однако имеющиеся в литературе данные о способности мономеров к поликопденсации с образованием полиамидов имеют тот недостаток, что все они получены в различных условиях, большей частью без учета влияния условий реакции, чистоты исходных реагентов и других физических и химических факторов, роль которых в ироцессе иоликонденсации весьма велика. В результате литературные даннЕле нередко противоречивы поэтому к ним следует относиться критически. С учетом этого замечания нужно использовать собранные нами литературные данные. В справочной табл. I приведены литературные данные о поликонденсации диаминов и дикарбоновых кислот и их производных (см. стр. 24). [c.16]

    Предпосылкой простого теоретического истолкования а на основе кинетической теории является, как указывалось выше, небольшая длительность соударений. Однако в тех случаях, когда реагируют между собой сложные молекулы, весьма возможно, что процесс соударения, приводящий к образованию реакционного клубка, имеет большую длительность, так что для протекания реакции во времени имеет существенное значение время, затрачиваемое на процессы во время соударений. Поэтому необходимо произвести рассмотрение, аналогичное таковому для мономолекулярных реакций, при которых самопроизвольный распад молекулы происходит под влиянием внутримолекулярных колебаний, время от времени превосходящих определенную величину. Для бимолекулярных реакций подобные изменения состояния реагирующих молекУл следует учитывать при нахождении их внутри реакционного клубка. До сих пор возможно было дать только совершенно общее толкование относительно подобных требующих времени процессов внутри реакционного клубка. Однако, как показывает Хиншельвуд [98, 99] (данные более старых работ [100—102] нужно считать устаревшими в свете новых исследований), все же можно понять, почему при определенных обстоятельствах следует ожидать определенных отношений между а, и д, которые тогда уже нельзя считать независимыми одно от другого. Подобную связь еще ранее устанавливали опытным путем. Так было обращено внимание на то, что для реакций с большой энергией активации обычно вычислялись также и большие константы действия. Для объяснения такой связи Хиншельвуд допускает образование предактивированного комплекса в реакционном клубке. Этот комплекс возникает в обратимом процессе, устойчив в течение некоторого измеримого времени и только при известных условиях достигает критического состояния, ведущего к химическому превращению. [c.472]

    Влияние антидетонаторов было изучено наиболее подробно на примере тетраэтилсвинца. Было найдено, что это вещество тормозит цепную реакцию, по которой происходит окисление углеводородов [26]. Давно уже было выдвинуто предположение, что антидетонаторы уничтожают перекисные соединения [27]. С химической точки зрения эта гипотеза вполне вероятна. Она легко объясняет влияние антидетонаторов, которое выражается в торможении реакций разветвления цепей при наличии пере-кисных соединений. Не следует предполагать, что действие антидетонаторов заключается в уничтожении самих носителей цепи. Действительный механизм реакций, в которые входит тетраэтилсвинец, пока еще не выяснен. Само по себе соединение это не тормозит ни фотохимического скисления ацетальдегида [28] при комнатной температуре, которое, как предполагают, является реакцией, развивающейся с помощью радикалов, ни окисления пентана [29] при 265 С, где реакция в основном управляется, очевидно, перекисными разветвлениями. После добавления в горючую смесь тетраэтилсвинца в двигателе было спектроскопически обнаружено присутствие атомного свинца 30]. Можно считать, что перекиси входят в реакцию с РЬ, так же как и с РЬО и РЬО,, и можно предложить механизм цепной реакции, включающий в себя либо попеременное возникновение РЬ и его окисей, либо, как это было предложено Эгертоном и Гэйтсом [21, 31], одних только окисей. Увеличение степени сжатия, при которой начинается детонация под влиянием тетраэтилсвинца, было изучено для большого числа углеводородов [32]. Для парафинов и ароматических соединений с насыщенными боковыми цепями увеличение критической степени сжатия при добавлении равных количеств тетраэтилсвинца обычно тем больше, чем выше критическая степень сжатия для чистых веществ. В случае непредельных циклических соединений влияние это было отрицательным. [c.405]

    Вероятность образования критических зародышей при гетерогенной пуклеации существенным образом зависит от физико-химических свойств подложки, причем влияние структуры подложки может быть разным. С одной стороны, структура образующейся новой фазы связана со структурой подложки. Это кристаллофизический аспект явления. С другой — подложка (с физико-химической точки зрения) обладает определенными адсорбционными свойствами, что во многом определяет характер гетерогенной реакции и влияет на кинетику зародышеобразования и роста новой фазы. Сложность проблемы заключается в том, что кристаллизационные процессы связаны с актами гетерогенной реакции, а сами акты кристаллизации, в свою очередь, зависят от физико-химических свойств среды. [c.5]

    Ка к только на рубеже этого века для лечения болезней, вызываемых бактериями, стали использовать лекарственные препараты, сразу заметили, что воздействие на бактериальную культуру того или иного лекарственного препарата часто приводит к тому, что чувствительная к этому препарату культура превращается в форму, устойчивую к нему. Лекарственный препарат, взятый в таких количествах, которые наверняка убили бы исходных, чувствительных бактерий, не оказывал влияния на культуру устойчивых бактерий. С началом широкого использования сульфамидных препаратов (в 30-х годах) и антибиотиков пенициллина и стрептомицина (в 40-х годах) развитие у бактерий устойчивости к лекарственным препаратам превратилось в явление обычное и стало (и все еще остается) проблемой огромной практической важности. При попытках объяснить природу этого явления исходили из широко распространенного тогда мнения, что бактерии приобретают устойчивость к лекарствам только после того, как последние на них подействуют. Одним из наиболее выдающихся защитников этого взгляда был Сирил Хиншельвуд, который развил в своей книге Химическая кинетика бактериальной клетки негенную теорию адаптации к лекарственным препаратам. Хиншельвуд считал, что в тех немногих устойчивых бактериях, которые пережили воздействие лекарственного препарата, это лекарство вызвало сдвиг равновесного состояния метаболических реакций с обычного уровня на новый, уже менее подверженный влиянию этого препарата. Книга Хиншельвуда вышла в свет в 946 г., через три года после того, как Лурия и Дельбрюк уже показали спонтанное происхождение устойчивых к фагу мутантов бактерий. Поэтому казалось бы естественным сделать допущение, что наблюдаемое у бактерий изменение от чувствительности к лекарственному препарату к устойчивости также возникает в результате спонтанного мутирования небольшой части популяции чувствительных к лекарству бактерий. В присутствии лекарственного препарата происходит, по-видимому, жесткий отбор таких устойчивых мутантов, так как они могут расти в этих условиях, тогда как все чувствительные клетки дикого типа погибают. Но на Хиншельвуда флуктуационный тест не произвел впечатления, и он опубликовал несколько правдоподобных критических разборов его интерпретации. Он был настолько уверен в правильности своей кинетической теории адаптации, что даже уже в 1953 г. писал Путем, подобным тому, который предполагается рассматриваемой [кинетической] моделью, адаптационные изменения должны происходить настолько легко, что если бы это было не так, то трудно было бы уклониться от вопроса, почему это не так . Авторитет Хиншельвуда в области химической кинетики придавал вес его взглядам, и это, вероятно, на несколько лет задержало развитие генетики бактерий на его родине, в Великобритании. [c.148]


Смотреть страницы где упоминается термин Критическая точка, влияние химических реакций: [c.246]    [c.233]    [c.126]    [c.89]    [c.16]    [c.126]   
Проблемы теплообмена (1967) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Критическая точка, влияние химических

Точка критическая

Химическая реакция, влияние в точке



© 2025 chem21.info Реклама на сайте