Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая реакция, влияние в точке

    Так же как и при рассмотрении равновесных процессов, при выводе уравнений, связывающих скорость процесса с диэлектрической проницаемостью, предполагалось, что растворитель — химически индифферентная среда. Однако химические (специфические) взаимодействия растворенного вещества с растворителем оказывают громадное влияние на скорость химической реакции. Влияние ЭТО часто бывает настолько велико, что диэлектрическая проницаемость растворителя отходит на второй план, а то и вовсе не сказывается. Здесь для иллюстрации этого положения можно обойтись одним, зато достаточно выразительным, примером. Реакция дегидробромирования пентабромэтана пиридином [c.81]


    При протекании химической реакции в газовой фазе действуют два фактора, оказывающих противоположное влияние на распределение энергии в системе сама химическая реакция, в той или иной степени нарушающая равновесное распределение энергии, и молекулярные столкновения, стремящиеся восстановить нарушенное равновесие тепловая релаксация). Конкуренция между этими двумя факторами приводит к тому, что, например при высоких температурах, когда вследствие большой скорости, реакции нарушения равновесного распределения энергии могут быть особенно велики, приходится решать систему уравнений химической кинетики и тепловой (колебательной) релаксации с целью определения неравновесной функции распределения. Поэтому процессы обмена энергии составляют основу неравновесной кинетики. Рассмотрению этих процессов посвящена настоящая глава. [c.150]

    Изучение влияния температуры позволяет также выявить стадии, не являющиеся стадиями химического характера. На рис. 1-14 показана скорость гидрирования этилена на палладиевом катализаторе (кривая /). В области низких температур процесс имеет энергию активации, характерную для химической реакции, в то время как в области более высоких температур наблюдается лишь незначительное ее повышение. Установлено, что процесс, являющийся чисто химической реакцией при низких температурах, при высоких температурах определяется скоростью диффузии реагентов к катализатору. При увеличении количества катализатора и, соответственно, уменьшении влияния фактора переноса вещества для менее активного катализатора — никеля и менее реакционноспособного олефина — пропилена эффект диффузии сказывается лишь при более высокой температуре. [c.53]

    Особое внимание в этой работе будет уделено следующим трем проблемам связи явления изомерии с гиперповерхностью потенциальной энергии как с центральным понятием современной теории химических реакций влиянию изомерии компонентов равновесных и кинетических процессов на их термодинамические и кинетические характеристики возможности априорного определения количества стационарных точек на данной гиперповерхности с помощью перечисления методами теории графов. Автор в течение ряда лет работает над этим кругом проблем в Институте физической химии и электрохимии им. Я. Гейровского Чехословацкой академии наук. Отдельные результаты этих исследований опубликованы примерно в тридцати журнальных статьях. Предлагаемая работа является попыткой обобщить и представить в цельном виде указанную проблему. [c.16]


    Элементарные процессы в газовом разряде и химическое взаимодействие атомов и молекул. Современная наука стёрла грань между химией и физикой. Теория атома не только объясняет излучение каждым веществом свойственного ему спектра, но и сущность химических сил, действующих между атомами. Теория валентности переплетается с учением об уровнях энергии атомов, вступающих в соединение и образующих молекулу. Согласно этой теории, взаимодействие между атомами и прочность связи между ними зависят от энергетических уровней, на которых находятся вступающие в соединение атомы. Поэтому естественно ожидать, что электрический разряд, приводящий к образованию в газе значительного числа возбуждённых и ионизованных частиц, может оказывать большое влияние на протекание химических реакций в газах. Кроме того, многие химические реакции требуют для своего начала наличия определённого запаса энергии у реагирующих частиц, так называемой энергии активации данной химической реакции. В то же время в газе, в котором происходит электрический разряд, налицо много частиц с большим запасом энергии возбуждённых атомов и молекул, ионов и, наконец, более или менее быстрых свободных электронов. [c.677]

    Не менее важным приложением эпитаксии является декорирующее действие зародышей при изучении поверхности монокристаллов. Длительное изучение поверхностной структуры необходимо для исследования поверхностных химических реакций, влияния структуры поверхности на механическую прочность, механизма испарения и роста кристаллов. Известно, что энергия связи поверхностных атомов зависит от тонкой структуры атомного масштаба. Атомы более легко испаряются из изломов, краев ступенек и углов. Различие энергетических состояний атомов обусловливает разную химическую активность у нерегулярностей и на совершенной поверхности при реакциях жидкостей и газов на твердых телах. [c.370]

    Если же задача заключается в изучении механизма термической деструкции, т. е. в оценке роли различных химических реакций, влиянии на их соотношение температурно-временных факторов и среды, то приходится выбирать несколько параметров, достаточно объективно характеризующих определенные химические процессы. Обычно используют состав продуктов деструкции и кинетические параметры процессов их образования. (Термогравиметрия может быть использована для оценки эффективной энергии активации процесса, его суммарных кинетических параметров.) Весьма важную информацию о механизме химических реакций можно получить, анализируя химический состав продуктов деструкции, например, методами хроматографии. Спектральные характеристики могут дать сведения об исчезновении одних и появлении других химических связей, оценка теплоемкости позволяет проследить общую тенденцию к замене менее прочных связей более прочными и т.д. [c.7]

    Если гетерогенная реакция сопровождается изменением объема, то она приводит к общему течению реагирующей смеси в направлении, нормальном к поверхности, на которой происходит реакция. Возникающий от этого конвективный поток складывается согласно закону (I, 11а) с диффузионным потоком и изменяет скорость диффузии. Его значение было впервые подчеркнуто Стефаном [1], почему мы и называем его стефановским потоком. Особенно существенным оказывается стефановский поток для процессов испарения и конденсации паров, в теории которых он имеет первостепенное значение. Для химических реакций влияние стефановского потока оказывается обычно второстепенной поправкой. [c.142]

    Построение кинетической модели и определение имеющихся в них неизвестных параметров осуществляется на основе экспериментальных данных. Исследователю обычно известна физико-химическая природа изучаемого класса химических реакций, влияние на их скорость температуры, давления, концентрации (активности) реагирующих веществ, состава и свойств катализатора определяют экспериментальным путем. Рещение обратной задачи с целью определения параметров модели проводится с использованием экспериментальных данных и уравнений математического описания экспериментальной установки. В зависимости от типа установки математическое описание чаще всего представляется либо системой обыкновенных дифференциальных уравнений в виде задачи Коши, либо системой нелинейных алгебраических уравнений. Поскольку измеряемые переменные состояния всегда содержат экспериментальную ошибку, искомые параметры модели с точки зрения статистики являются случайными числами . Тем не менее, вполне естественным является требование, чтобы в рамках имеющихся ограничений параметры модели лежали в окрестности предполагаемых истинных значений. Необходимым условием для достижения этой цели является информативность экспериментальных [c.80]


    Далее Блэк показал, что если оксид кальция оставить на воздухе, то он медленно превращается в карбонат кальция. Исходя из этого, Блэк заключил (правильно ), что в атмосфере присутствует небольшое количество углекислого газа. Это было первое четкое указание на то, что воздух не простое вещество и, следовательно, вопреки представлениям древних греков он не является элементом в определении Бойля, а представляет собой смесь по крайней мере двух различных веществ обычного воздуха и углекислого газа. Изучая влияние нагревания на примере карбоната кальция, Блэк установил, как меняется вес вещества при нагревании. Он также определил, какое количество карбоната кальция нейтрализует заданное количество кислоты. Таким образом, Блэк изучал химические реакции, используя метод количественного измерения. Этот метод был развит и усовершенствован Лавуазье. [c.40]

    Если при проведении химической реакции можно пренебречь влиянием конвективного и основного (диффузионного) потоков, то второе уравнение (6-50) принимает вид  [c.213]

    История исследований в области химической кинетики знает много примеров случайных открытий важных факторов, имевших решающее влияние на ход реакции и остававшихся до этого неизвестными. В этом смысле большая часть экспериментального материала в химической кинетике в течение какого-то времени обычно носит как бы эмпирический характер. Это, однако, не должно умалять большого прогресса, сделанного в количественном изучении факторов, которые влияют на ход химической реакции и знание которых должно обеспечить основу будущего успеха. [c.14]

    Характерной особенностью фотохимических реакций является слабая зависимость их скорости от начальной температуры смеси. Изменение в широких пределах начальной температуры смеси не оказывает существенного влияния на интенсивность излучения. Соответственно этому, как показывает опыт, в предпламенной зоне не происходит возрастания скорости предпламенных процессов, что, в свою очередь, не отражается и на скорости распространения пламени (скорости горения). Так, например, изменение начальной температуры метано-воз-душной смеси с 20 до 680°С приводит к возрастанию скорости распространения пламени всего в 10 раз (с 30 до 300 см/с [144], в то время как согласно правилу Вант-Гоффа скорость большинства химических реакций с повышением температуры только на 10 градусов возрастает в 2—4 раза. Ни тепловая , ни диф- [c.124]

    Вблизи концентрационных пределов, когда стационарное распространение детонационной волны лимитируется скоростью химической реакции, обусловливающей самовоспламенение смеси, на положение пределов существенно влияют активные присадки, не изменяющие термических свойств смеси [158]. В то же время эти активные присадки не оказывают заметного влияния на скорость стационарного распространения пламени. Так, например, не было обнаружено изменения скорости распространения детонационной волны в углеводородо-кислородной смеси при введении в нее небольших количеств тетраэтилсвинца. Эти наблюдения свидетельствуют об определенных различиях механизмов возбуждения детонационной волны и ее распространения. [c.143]

    Применение смазочных материалов с высокой химической активностью способствует образованию вторичных структур, благоприятствует появлению хемо-механического эффекта, выражающегося в изменении физико-химических свойств и тонкой структуры твердого тела под влиянием химических (электрохимических) реакций, протекающих на его поверхности. В процессе этих реакций образуется дополнительный поток дислокаций. [c.249]

    Уравнения ( 111-168) — ( 111-175), полученные для случая когда на межфазной поверхности происходит реакция первого по рядка, указывают на то, что в кинетической области скорость пре вращения таким же образом зависит от некоторых параметров как скорость химической реакции на поверхности. Влияние темпе ратуры в данном случае можно выразить уравнением Аррениуса т. е. зависимость будет иметь экспоненциальный характер. Ско рость превращения в этой области не зависит от скорости движе ния потока через систему. [c.248]

    Если предположить, что сопротивление диффузии через пленку продукта и сопротивление химической реакции незначительны по сравнению с сопротивлением диффузии в ламинарной газовой пленке, то последнее будет оказывать решающее влияние на скорость превращения. [c.263]

    Если сопротивление химической реакции оказывает рещающее влияние на скорость превращения, то можно использовать зависимость (Vni-232), поскольку схема процесса будет такая же, как и для зерна с неизменяющимся размером (уменьщается поверхность, на которой проходит реакция). [c.269]

    Для химической реакции движущую силу нельзя представить в виде, удобном для подстановки в уравнение (1Х-1). Величиной, определенным образом связанной с движущей силой, является изменение энергии Гиббса, которое как термодинамическая, а не кинетическая величина определяет только качественно направление хода реакции. Выше изменение э.той энергии позволило нам рассчитать концентрации (т. е. величины, оказывающие влияние на скорость реакции), которые могут быть достигнуты системой в состоянии равновесия. [c.348]

    В ряде случаев скорость одной из стадий (диффузии или химической реакции) настолько мала, что она определяет скорость процесса в целом. Аналогичное положение характерно для некоторых процессов теплопередачи или массообмена. Определяющую стадию можно обнаружить, экспериментально изучая влияние различных переменных на скорость самого процесса. Так, например, если суммарная скорость процесса быстро возрастает с увеличением температуры в соответствии с законом Аррениуса, то определяющей стадией является химическая реакция. В других случаях скорость процесса может изменяться с изменением величины поверхности раздела фаз или расходов веществ в соответствии с закономерностями, характерными для процесса массопередачи. [c.174]

    Если же реагирующие вещества не подчиняются законам идеальных газов, то в уравнение (Х1,5) вместо парциального давления следует подставить летучесть или активность. Уравнение (XI,5) позволяет установить влияние температуры, инертного газа и начальных концентраций иа направленность химической реакции. При условии, что р к == р в = р е =р р = атм, [c.250]

    На характер протекания химической реакции большое влияние оказывает качество смешения компонентов. Если в аппаратах периодического действия смешение производится в самом реакторе, то для непрерывно действующих реакторов, особенно при реакциях в паровой фазе, необходимо предварительное смешение. Нами уже упоминались смесители, применяемые при хлорировании. На рис. 48 показано несколько конструкций камер предварительного смешения они могут быть соединены с реактором или смонтированы отдельно от него. [c.122]

    Автор не стремился к чрезмерно глубокому анализу проблем гидродинамики и реакционной кинетики, хотя и те и другие рассматриваются в книге в той мере, в какой это необходимо применительно к интересующему вопросу. Основное же внимание уделено центральной теме — влиянию химических реакций на скорость абсорбции газов жидкостями и на размеры промышленных и лабораторных аппаратов для проведения абсорбционных процессов. [c.9]

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]

    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    Лавуазье опубликовал свой учебник Элементарный курс химии в 1789 г., и трудно переоценить то влияние, которое последний оказал на химию. Там был не только изложен закон сохранения массы в химических реакциях и опровергнута флогистонная теория, но в приложении к книге содержалось то. что в сущности является нашей современной системой номенклатуры. Поэтому для целого поколения ученых химия превратилась во французскую науку (разумеется, это выражение дольше всего продержалось во Франции). [c.275]

    Воздействие химической реакции на равновесное распределение переходящего компонента между фазами учитывается при вычислении общей движущей силы массопередачи. Влиянием потока химической реакции на поток массы, как правило, пренебрегают. Таким образом, при определении коэффициентов массопередачи учет влияния химической реакции сводится к учету изменения потока массы из-за непосредственного изменения поля концентрации. Однако если скорость процесса массопередачи лимитируется сопротивлением транспортной фазы, то воздействие химической реакции на распределение концентрации переходящего компонента в реакционной фазе не может привести к изменению скорости массопередачи. Поэтому химическая реакция оказывает воздействие на скорость массопередачи только в том случае, когда скорость массопередачи лимитируется сопротивлением реакционной фазы. [c.227]

    В предыдущих главах неоднократно подчеркивалось, что основным отличительным признаком многофазных реакторов, в том числе двухфазных жидкостных реакторов (ДЖР), является переход одного пли нескольких реагентов из транспортной фазы в реакционную как необходимое условие протекания химической реакции. Поэтому прежде всего ДЖР является контактным аппаратом. Существуют многочисленные варианты конструктивного оформления ДЖР. Выбор той или иной конструкции аппарата для проведения конкретного технологического процесса — задача, которая сегодня далеко не всегда имеет однозначное решение, что вытекает из самой природы влияния конструктивных факторов на суммарный процесс в ДЖР. [c.244]

    Проточные реакторы. Большинство современных промышленных процессов проводится в непрерывно действующих проточных реакторах. Такой реактор представляет собой открытую систему, взаимодействующую с внешней средой в аппарат непрерывно подаются исходные вещества и отводятся продукты реакции и выделяющееся тепло. На показатели работы реактора влияют, наряду с химической кинетикой и макрокинетикой процесса, новые, специфические факторы конвективный поток реагентов и теплообмен с внешней средой. Расчет и теоретический анализ работы реактора с учетом взаимодействия и взаимного влияния всех этих факторов — далеко не простое дело. Число параметров и переменных, необходимых для точного расчета, в практически важных случаях может быть чрезвычайно большим и превосходить возможности даже самых быстродействующих вычислительных машин. Дополнительную сложность вносят типичные для крупномасштабных систем явления статистической неупорядоченности и случайного разброса характеристик процесса. Эти явления нельзя рассматривать как внешнюю, досадную помеху они связаны с самой природой процесса и должны обязательно приниматься во внимание при анализе его работы. Непременным залогом успеха при расчете промышленных химических реакторов является предварительный анализ основных факторов, влияющих на процесс в данных условиях. Только таким путем можно выделить основные связи из сложной и запутанной картины взаимодействия различных процессов переноса и химической реакции, не отягощая расчет излишними и зачастую обманчивыми уточнениями и в то же время не упуская из виду существенных, хотя, может быть, и трудных для анализа, действующих факторов. [c.203]

    Как мы уже знаем, гомогенные процессы характеризуются взаимодействием веществ в одной фазе. В гетерогенных реакциях, наряду с химическими превращениями, имеются стадии переноса веществ. Их влияние на процесс в целом зависит от условий его протекания. Если наиболее медленной стадией является химическая реакция, то говорят, что процесс протекает в кинетической области, если же, наоборот, звеном, тормозящим процесс в целом, служит перенос веществ, то говорят о диффузионной области. Что является лимитирующей стадией — взаимодействие или транспорт вещества,— можно установить по температурной зависимости скорости реакции в первом случае она гораздо чувствительнее к температуре, чем во втором. [c.103]

    При протекании химической реакции в газовой фазе действуют два фактора, оказывающие противоположное влияние на распределение энергии в системе сама химическая реакция, и той или ипой степени нарушаюи ая [c.37]

    Расчетные методы нахождения конечной to4kvi титрования успешно применяются во всех случаях, когда к.т.т. не может быть установлена экспериментально. Это связано прежде всего с обратимостью химической реакции, влиянием которой можно пренебречь в ряде случаев лишь в моменты титрования, удаленные от области точки эквивалентности. Расчетный способ к.т.т. полезен также при титровании разбавленных растворов определяемых веществ, когда на соответствующей кривой титрованил скачок потеН[1.иапа незначителен или вовсе отсутству< т. [c.153]

    Ранее мы рассмотрели различные случаи диффузии, сонровождаюш,ей реакции в пористых катализаторах. Используем далее результаты, полученные на этих упрош,енных моделях, чтобы установить влияние, оказываемое диффузией на некоторые параметры, которые могут наблюдаться нри экспериментальном исследовании. Если не известно влияние диффузии, искажаюш,ей истинную кинетику химической реакции, то легко получить ошибочные сведения о скоростях реакций и сделать неправильный вывод об их механизме. Важно также решить, правильно ли выбраны условия эксперимента для наблюдения истинной кинетики реакции. Таким образом, если мы хотим изучать механизм реакции, то целесообразно выбирать такие условия, чтобы диффузия пе оказывала влияния на скорость химической реакции. В то же время снособность оценить наиболее подходящий размер таблеток катализатора для промышленной реакции дает определенные преимущества, ибо неправильный выбор этого параметра может привести к финансовым потерям. Поскольку установка теплообменного оборудования и снабжение топливом в случае больших реакторов требуют больших затрат, рентабельность такого промышленного предприятия в большой степени зависит от наличия реактора, который обеспечивал бы необходимую производительность при минимальных размерах. Если размер таблеток катализатора завышен, то это приводит к непроизводительной затрате объема реактора. Использование таблеток заниженного размера может в случае медленных реакций оказать нежелательное воздействие на выход продукта. [c.205]

    Перенос массы происходит, где бы ни протекала химическая реакция, будь то промышленный реактор, биологическая система или исследовательская установка. Как отмечал Вейсц [1], реагенты должны встретиться, если нужно, чтобы реакция происходила заметим, что во многих случаях реакция замедляется или прекращается, если не удаляются ее продукты. Взаимодействующим веществам нетрудно прийти в контакт при гомогенных реакциях в одной хорошо перемешиваемой жидкой или газовой фазе. Однако скорость массопередачи может полностью определять химическое превращение, когда реагенты должны перемещаться из одной фазы в другую, чтобы протекала реакция. Сюда, например, можно отнести случай, когда реакция происходит на поверхности очень активного катализатора, который находится в контакте с жидкой средой, доставляющей взаимодействующие вещества и уносящей продукты реакции. При обратимом процессе реакция протекает лучше, если целевой продукт непрерывно удаляется за счет переноса массы во вторую фазу, в которой превращения не происходит. Кроме того, относительные скорости массопередачи нескольких реагирующих компонентов и продуктов реакции могут в значительной мере оказывать влияние на избирательность, если при этом протекают конкурирующие реакции. [c.11]

    Далее исследовалось влияние концентрации трехвалентного хрома на кинетику окисления уксусного альдегида. Для этого был приготовлен ряд растворов с постоянной концентрацией серной кислоты, равной 1,41 М и с различной концентрацией се-энокислого хрома. Концентрация сернокислого хрома указана на графиках рис. 14. Из рисунка видно, что трехвалентный хром не оказывает влияния на скорость реакции. Даже в случае отсутствия его скорость химической реакции остается той же самой. [c.138]

    Газофазные реакции могут происходить в замкнутых сосудах, что приводит к физическому условию неизменности плотности газа в ходе химических реакций. Влияние химической реакции на давление и температуру зависит от природы стенок сосуда. Если стенки сосуда хорошо проводят тепло и сосуд находится в термостате, то температура в сосуде остается постоянной, а давление изменяется только в результате изменения полного числа молекул в сосуде, так как давление обратно пропорционально средней молекулярной массе в соответствии с уравнением Р = р(] / 1)Г = соп81/[х. Если стенки сосуда не проводят тепло (адиабатический случай), то тепло, высвобождающееся в химической реакции, приводит к росту температуры. Температура и число молекул изменяются независимо, на данной стадии реакции связаны между собой и с давлением уравнением состояния идеального газа. [c.15]

    Для случая мгновенной обратимой химической реакции траектории процесса ректификации будут располагаться иа многообразиях химического равновесия, в связи с чем структура полной диаграммы фазового равновесия будет оказывать лишь косвенное влияние на поведение этих траекторий. В случае протекания одной обратимой реакции размерность многообразия химического равновесия будет на единицу меньше размерности концентрационного симплекса, соответствующего всей рассматриваемой многокомпонентной смеси. Это и понятно, так как выбранным условиям соответствует одно дополнительное уравнение связи. Естественно, каждое из многообразий химического равновесия будет обладать своей термодинамико-топологичес кой структурой, при> ем в основу различия этих структур может быть также положено общее число и взаимное расположение особых точек рассматриваемого многообразия. [c.195]

    Исследуя влияние давления на скорость реакции, нужно помнить о том, что стехиометрические уравнения большинства химических реакций не отражают их механизма и в действительности превращение проходит как несколько следующих одна за другой простых реакций разного порядка. В качестве примера можно использовать реакцию синтеза метанола СО + 2Нг = СН3ОН, которая протекает не как реакция третьего порядка, а, вероятно, как две последовательные реакции второго порядка. Поскольку влияние давления на скорость реакции меньше в случае реакций более низкого порядка, теоретическое предвидение такого влияния не может быть основано на стехиометрическом уравнении реакции. Если механизм процесса неизвестен, то обязательно нужно определить порядок кинетического уравнения экспериментальным путем. [c.235]

    Рис. 6.8 дает представление о влиянии параметров Ре и m на величину А. Значение т характеризует величину емкости хемосорбента, рост которой, как известно, приводит к более интенсивному массообмену. Сплошные кривые для А соотвегствуют расчетам при Ре = 40, а штриховые — при Ре - . Кривые 1, 2 тл 4 построены при / j и = 1 и т = 5 3 и 1, соответственно, и могут быть приближенно описаны аналитической формулой (6.97). Значение А о определяется в данном случае по кртвой б, рассчитанной для Кг = 0. Кривая 3 соответствует режиму быстропротекающей реакции при т=п = 1 и (3 = 0,0005 и также может быть рассчитана с помощью формулы (6.97). Для нее значение Л о определяется по кривой 5. Введя отношение величин Ао для кривых 3 и 4, определенных по формуле (6.97), заметим, что оно равно отношению величин Aq для кривых 5 и б. Этот факт указьшает на то, что в данном случае гидродинамика не влияет на химическую реакцию и роль критерия Пекле в процессе хемосорбции та же, что и при чистой диффузии. [c.280]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    Если скорость диффузии и скорость химической реакции, рассмотренные независимо друг от друга, соизмеримы, то имеется переходная область. Один и тот же процесс, в.зависимости от условий его проведения, может лежать в различных областях. Большое (влияние на характер протекания гетерогенного химического процесса оказывают давления реагирующих веществ,..хкоррстц.п охо,крв, пористость катализатора и темпера- [c.312]

    Скорость реакции, отнесенная к единице массы катализатора, зависит не только от порозности, но и от концентрации реагентов и температуры. В этом случае зависимость может оказаться значительно более сложной, чем при некаталитических реакциях. Чтобы имело место явление катализа, реагенты должны продифундировать через цоры. При этом скорость процесса может лимитироваться реакцией или диффузией, либо та и другая стадия будут оказывать на скорость процесса почти одинаковое воздействие. Если скорость лимитируется реакцией, что типично для низких температур, то влияние концентрации и температуры будет таким же, как и при химической реакции. Наоборот, если скорость лимитируется диффузией, что типично для более высоких температур, то влияние концентрации и температуры аналогично влиянию, имеющему место при диффузии. В переходной области, в которой на общую скорость процесса влияют как реакция, так и диффузия, эффект температуры и концентрации на процесс часто оказывается довольно сложным. [c.40]

    Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа в жидкости не сопровождается химической реакцией или, по крайней мере, влиянием этой реакции на скорость процесса можно пренебречь. Вследствие этого физическая абсорбция не сопровождается тепловым эффектом. Если в этом случае начальные потоки газа и жидкости незначительно разлитаются по температуре, то такую абсорбцию можно рассматривать как изотермическую. С этого наиболее простого случая начнем рассмотрение расчета процесса абсорбции. [c.102]

    Как показано в главе IX, конечной целью определения оптимальной температурной последовательности (ОТП) в реакторе является оптимальная селективность процесса в каждом сечении алпарата. Но на селективность сложной химической реакции, протекающей на пористом катализаторе, а также на производительность единицы объема катализатора можно оказать влияние, варьируя пористзгю структуру катализатора. В случае изменения пористой структуры катализатора при фиксированной температуре кинетика химической реакции будет переходить из одной кинетической области в другую, например, из внутрикинетической во внутридиффузионную или наоборот. Соответственно изменится и селективность сложной реакции. В общем случае для определения оптимальной области протекания реакции, с точки зрения селективности, необходимо решить внутридиффузионную задачу в виде системы уравнений [c.191]


Смотреть страницы где упоминается термин Химическая реакция, влияние в точке: [c.425]    [c.102]    [c.106]   
Проблемы теплообмена (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Критическая точка, влияние химических реакций

Химическая реакция, влияние в точке торможения в МГД-течении



© 2024 chem21.info Реклама на сайте