Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность разделения в хроматографии в жидкостной хроматографии

    Л.2. Сопоставление адсорбции и распределения. Среди различных вариантов разделения в жидкостной хроматографии, вероятно, наибольшим возможным числом комбинаций фаз и поэтому наибольшей потенциальной селективностью обладает распределительная жидко-жидкостная хроматография, хотя она меньше всего используется в лабораториях. Традиционно жидко-жидкостное распределение включает прохождение менее полярной подвижной фазы через слой, заполненный носителем с большим объемом и малой удельной поверхностью (таким, как диатомитовая земля), на который нанесена неполярная подвижная фаза [107, 108]. Обращая полярность фаз, т.е. нанося менее полярные соединения на носитель и используя более полярную жидкость в качестве подвижной фазы, получают альтернативный вариант метода. Эти два варианта были названы нормально-фазной я обращенно-фазной хроматографией соответственно. [c.73]


    В жидкостной хроматографии селективность зависит как от состава стационарной фазы, так и состава подвижной фазы. Поэтому необходимо говорить о селективности системы фаз в целом, а не только о селективности стационарной фазы, как в газовой хроматографии, где подвижная фаза представляет собой практически инертный по отношению к разделяемым веществам газ-носитель. Тем не менее существует точка зрения, что межмолекулярными взаимодействиями в газовой фазе также нельзя полностью пренебрегать и что они могут влиять на селективность разделения веществ в газовой хроматографии [64]. [c.182]

    Жидкостная колоночная хроматография по сравнению с другими методами разделения имеет ряд преимуществ мягкие условия опыта (комнатная или близкая к ней температура), возможность регулирования селективности разделения с помощью различных элюентов, использование методов ступенчатого и градиентного элюирования, отсутствие влияния окружающей атмосферы на сорбент и разделяемую смесь (в отличие от бумажной и тонкослойной жидкостной хроматографии). В результате использования высокоскоростной жидкостной хроматографии при давлениях у входа в колонку в десятки МПа и разработки современных моделей жидкостных хроматографов этот метод стал успешно конкурировать с газовой хроматографией. [c.32]

    Действительно, хроматограмма показывает, что к ароматическим в заметной мере примешаны олефины, и мы полагаем, что во фракции олефинов есть некоторое количество насыщенных углеводородов. Затруднения состоят в том, что селективность смешанной краски, применявшейся в стадии разделения методом жидкостной хроматографии, не проверена точно определение степени селективности этих красок в настоящее время является предметом наших исследований. Что касается различия между хроматограммами, полученными до и после обработки силикагелем, то они действительно заметны, и я думаю, что вопрос о них можно будет решить в ходе дальнейших исследований в области адсорбционной хроматографии жидкостей. [c.474]

    После извлечения пестицидов из почвы экстрагированием, перед ТСХ-разделением обычно необходимо провести концентрирование и очистку экстракта (второй этап). Экстракты очищают с помощью селективных растворителей, колоночной жидкостной хроматографии, избирательной адсорбции или комбинацией этих способов. [c.210]

    Помимо разделения полимерных реагентов по эффективному размеру в растворе их компонентов, как это проводилось для изоцианатов методом хроматографии стерического вытеснения, высокая селективность обращенно-фазовой жидкостной хроматографии позволяет применять этот метод и для исследования полиуретановых реагентов. [c.563]


    Таким образом, селективность разделения в жидкостно-адсорбционной хроматографии определяется не только межмолекулярным взаимодействием молекул данного компонента с адсорбентом, но и межмолекулярными взаимодействиями молекул элюента (подвижной фазы) как с адсорбентом, так и с молекулами компонента, находящимися на поверхности адсорбента и в объеме элюента. Меняя природу подвижной фазы, можно в широких пределах изменять удерживаемые объемы и селективность разделения на одних и тех же адсорбентах. [c.206]

    Некоторые вопросы селективности ЖАХ. Селективность разделения в жидкостно-адсорбционной хроматографии (в частности, отношение удерживаемых объемов компонентов) в большинстве случаев значительно выше, чем в газовой хроматографии. Это связано, во-первых, с тем, что в жидкостно-адсорбционной хроматографии разделение происходит при более низких температурах (чаще всего при комнатных), т. е. для многих систем при температурах на 100— [c.226]

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]

    Селективность неподвижной фазы. В газо-жидкостной хроматографии разделение смеси веществ достигается тем легче, чем больше различие в коэффициентах Генри компонентов разделяемой смеси для выбранной неподвижной фазы. Херингтон [27] вывел соотношение [c.172]

    Иначе обстоит дело с селективностью. Она определяется исключительно природой взаимодействующих веществ компонентов разделяемой смеси и неподвижной жидкой фазы. Умелое варьирование свойств неподвижных жидких фаз позволяет широко изменять условия разделения. Это является одним из существенных факторов, способствующих расширению применения газо-жидкостной хроматографии для аналитического разделения сложных смесей и обеспечивающих ее успех. [c.47]

    Селективность неподвижной фазы. В газо-жидкостной хроматографии разделение смеси веществ достигается тем легче, чем больше различие в коэффициентах Генри компонентов разделяемой смеси для выбранной неподвижной фазы. Херингтон 10] вывел соотношение (76), позволяющее связать относительный удерживаемый объем со свойствами системы сорбат — сорбент. Согласно этому уравнению, разделение компонентов смеси может происходить вследствие различия у компонентов смеси либо упругости пара, либо коэффициентов активности. [c.61]

    Физико-химические основы селективности разделения при аналитических применениях жидкостной адсорбционной молекулярной хроматографии рассмотрены в лекциях 116 и 17. [c.265]

    Для достижения разрешения Я= (касание пиков) при малом а =1,01 требуется около 150000 эффективных тарелок, а при а=1,10 уже только около 2000. Для достижения 1,5 (при этом достигается полное раздвигание пиков 1 и 2 с участком нулевой линии между ними) при а=1,01 требуется около 350000 теоретических тарелок, а при а=1,10 только около 5000. Эти числа показывают, что для реализации селективности колонны, определяемой химией поверхности и структурой скелета адсорбента, а также природой элюента, в жидкостной хроматографии для разделения близких по структуре молекул нужны весьма высоко [c.285]

    В жидкостной хроматографии имеются большие возможности управления селективностью разделения, чем в газовой хроматографии при применении практически неадсорбирующегося газа-носителя. За счет влияния жидкого элюента удерживание дозируемых веществ и селективность их разделения может определяться значительно большим разнообразием различных видов межмолекулярных взаимодействий. Здесь можно реализовать случаи, когда удерживание определяется преимущественно специфическим взаимодействием дозируемого вещества с адсорбентом при [c.286]

    В жидкостной хроматографии на полярном адсорбенте наблюдается высокая селективность разделения полярных изомеров и других соединений, отличающихся как пространственным строением, так и распределением электронной плотности в молекуле. Например, жидкостно-адсорбционная хроматография на силикагеле с гидроксилированной поверхностью из неполярного или слабо-полярного элюента позволяет хорошо разделять о-, м- и -изомеры ароматических соединений, содержащих полярные группы в этих положениях. Селективность к таким изомерам в жидкостной хроматографии значительно выше селективности в газовой хроматографии на том же силикагеле. Это связано с тем, что в жидкостной хроматографии разделение происходит преимущественно за счет различий в специфических межмолекулярных взаимодействиях между полярными группами дозируемого вещества (адсорбата) и полярными группами пли ионами адсорбента, так как неспецифические межмолекулярные взаимодействия молекул ад- [c.293]


    Рассмотрим это важнейшее уравнение более подробно. Если, а=1, то разрешение равно О, т.е. разделения нет независима от числа теоретических тарелок в колонке. Однако из характера функции а в уравнении видно, что небольшие изменения могут привести к заметному увеличению разрешения, особенно для тех случаев, когда значения а близки к 1. Если за счет подбора условий разделения удается изменить а с 1,1 до 1,2, это приводит к улучшению разрешения в два раза. Таким образом, на фактор селективности следует обращать основное внимание при подборе условий разделения, учитывая различие во взаимодействии разделяемых компонентов как в неподвижной, так и в подвижной фазе. В отличие от газовой хроматографии, в которой взаимодействия в подвижной (газовой) фазе незначительны и селективность системы в основном определяется только взаимодействиями веществ с неподвижной фазой, в жидкостной хроматографии подвижная (жидкая) фаза не является инертной, а может играть главную роль в процессе термодинамического распределения между неподвижной и подвижной фазами вследствие селективного взаимодействия разделяемых веществ с подвижной фазой. Поэтому в выборе условий для высокоселективного разделения как выбор [c.10]

    Использование не самого образца, а его производных в жидкостной хроматографии позволяет увеличить чувствительность и селективность метода. Иногда для получения производных необходимо предварительное концентрирование образца. Для многокомпонентных смесей обычно требуется предварительное разделение на более простые по составу фракции, чтобы исключить перекрытие зон в конечной хроматограмме или удалить примеси, влияющие на характеристики колонки. Некоторые соединения не обладают способностью поглощать свет, и для их определения с помощью высокочувствительных фотометрического или флуориметрического детекторов необходимо получить производные, регистрируемые этими детекторами. Присоединяя способную к флуоресценции группу к окси- или аминогруппе образца, можно обнаружить очень малые концентрации флуоресцирующих веществ. [c.68]

    Повышение ионной силы водной фазы приводит к уменьшению числа образующихся ионных пар из-за конкуренции буферных ионов с противоионом за образование ионной пары. Поэтому повышение ионной силы в ион-парной хроматографии приводит к снижению к при разделении на обращенной фазе и к повышению к при разделении на нормальной фазе. Влияние буферных ионов возрастает в последовательности М02-<Вг-<.С1-<304 -. Селективность растворителя в ион-парной хроматографии изменяется по тем же правилам, как и в случае распределительной жидкостной хроматографии. [c.78]

    Жидкостная колоночная хроматография по сравнению с дру гими методами разделения имеет ряд преимуществ мягкие ус ловия опыта — комнатная или близкая к ней температура, воз можность регулирования селективности разделения с помощью различных элюентов, использование методов ступенчатого и гра диентного элюирования, отсутствие влияния окружающей атмо сферы на сорбент и разделяемую смесь (в отличие от бумажной и тонкослойной жидкостной хроматографии). В результате использования высокоскоростной жидкостной хроматографии при [c.59]

    Для достижения селективного разделения в жидкостной хроматографии можно использовать самые различные" свойства соединений размер, заряд, гидрофобность, способность к образованию координационной связи и комплексов с переносом заряда и др. Различия по каждому из таких свойств может быть использовано для разделения группы соединений. Ниже приведены основные механизмы разделения в ВЭЖХ и рассмотрены соответствующие им варианты хроматографии. [c.363]

    Какова практическая ценность таких больших чисел разделений Обычно считают, что высокая эффективность разделения в жидкостной хроматографии определяется в основном высокой селективностью, а не большими числами разделений. Однако, по мнению Рохспайдера (Инсбрук, май 1975 г.), это утверждение несправедливо. Поня- [c.59]

    В основном успех разделения газо-жидкостной хроматографии обеспечивается выбором растворителя (неподвижной фазы). При этодг прежде всего должна быть обеспечена максимальная селективность. [c.93]

    Комбинируя фракции, разделенные методом жидкостной хроматографии. Ли и сотр. [3] получали селективно обогащенные конденсаты дыма табака и марихуаны и затем анализировали их на стеклянной-газохроматографической колонке. Новотны и сотр. [4] концентрировали дым сигарет трех различных сортов при помощи пористого полимера тенакс ОС. Полученные концентраты десорбировали и хроматографировали на стеклянных колонках типа НС (рис. 13.1).,--В другом исследовании [5] из пылевидных загрязнв ний воздуха было выделено свыше. 100 полициклических соединений и в том числе следовые количества алкилированных соединений. При йтом было продемонстрировано прекрасное разделение, в том числе и изомеров, различающихся положением алкильных групп.,  [c.159]

    Универсальность и селективность метода газо-жидкостной хроматографии связаны с возможностью широкого выбора жидких фаз. Величина коэффициента распределения может изменяться в 50 раз для различных фаз. Это приводит к пятидесятикратным различиям в величинах времени удерживания, что способствует лучшему разделению. Дополнительная информация о неподвижных фазах приведена в гл. IV. [c.23]

    С ниже, чем в газовой хроматографии. Во-вторых, в жидкостноадсорбционной хроматографии при разделении полярных изомерных веществ селективность разделения обеспечивается различием в основном только специфических взаимодействий, чувствительных к ориентации молекул на поверхности, тогда как неспецифическое межмолекулярное взаимодействие разделяемых компонентов с адсорбентом обычно близко к неспецифическому взаимодействию молекул элюента с поверхностью адсорбента (принимая во внимание коэффициент вытеснения, см. разд. 1 этой главы). По этой причине в обычном варианте жидкостно-адсорбционной хроматографии во многих случаях гомологи практически не разделяются. В этом случае следует применять адсорбционную хроматографию на малоспецифических или неспецифических адсорбентах или же аналогичный вариант жидкостножидкостной хроматографии. [c.226]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    Таким образо.м, жидкостно-адсорбционная хроматография в нас-тояшее время является высокочувствительным, достаточно селективным и экспрессным методом разделения и анализа многокомпонентных смесей в растворах, не только способным конкурировать как по скорости анализа, так и по эффективности разделения с газовой хроматографией, ио и имеющим существенные преимущества. [c.68]

    В последнее время развивается новое направление— двумерная (тандемная) масс-спектрометрия (МС — МС, масс-спектрометр — масс-спектрометр). Метод включает ионизацию молекул и разделение по массам ионов, образующих масс-спектр, выбор из этого спектра определенного иона-предшественника и получение масс-спектра продуктов его фрагментации в результате мономолекулярного разложения мета-стабильных ионов с малым временем жизни ( Ю с) или в результате дальнейшего возбуждения иона-предшественника столкновениями с инертным газом. Получаемые спектры могут использоваться и для решения аналитических задач, и для идентификации отдельных соединений в сложных матрицах. По сравнению с сочетанием газовой и жидкостной хроматографии с масс-спектрометрией МС—МС имеет преимущество в селективности, чувствительности и скорости анализа. Наибольшее преимущество масс-спектрометри-ческого разделения компонентов смеси — менее строгие требования к летучести образцов. [c.756]

    Разрешение как параметр, характеризующий разделение пиков, увеличивается по мере возрастания селективности, отражаемой ростом числители, и роста эффективности, отражаемой снижением значения знаменателя из-за уменьшения ширины пиков. Поэтому быстрый прогресс жидкостной хроматографии привел к изменению понятия жидкостная хроматография вьюокого давления — оно было заменено на жидкостную хроматографию вьюокого разрешения (при этом сокращенная запись термина на английском языке сохранилась НРЬС как наиболее правильно характеризующее направление развития современной жидкостной хроматографии). Сокращение, принятое в отечественной литературе, — ВЭЖХ, расшифровываемое как высокоэффектиная жидкостная хроматография , для современной жидкостной хроматографии несколько менее удачно, так как не учитывается важнейший фактор разделения — селективность. [c.10]

    Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами. [c.74]

    В жидкостной хроматографии применяют селею-ивные детекторы (амперометрический, флуориметрический и др.), способные детектировать очень малое количество вещества. Очистка образца до ввода в жидкостной хроматограф минимальна, Циередко его вводят без предварительной обработки, и без получения производных, что часто невозможно при применении других методов анализа. Наконец, в жидкостной хроматографии возможно создание уникального диапазона селективных взаимодействий за счет изменения подвижной фазы, что значительно улучшает разрешающую способность всей хроматографической системы. Работа с микропримесями налагает ряд требований на весь процесс разделения. Особенное значение имеет разрешающая способность колонки, выбор детектора, предварительная обработка образца и построение калибровочного графика. Правильный выбор условий хроматографирования позволяет повысить чувствительность, надежность и воспроизводимость результатов, что очень актуально при работе с микропримесями. [c.84]

    В качестве сорбентов для И. х. могут использоваться нейтральные носители, пропитанные жидкими ионитами, т.е. несмещиваюшимися с водой орг. основаниями или к-тами, напр, триоктиламином, триоктилметиламмонием, алкиловыми эфирами алкилфосфорной к-ты. Разбавленные р-ры ионогенных ПАВ в сочетании с нейтральными гидрофобными носителями находят применение в ион-парной хроматографии (см. Жидкостная хроматография), к-рая отличается высокой эффективностью и большим числом варьируемых параметров для подбора оптим. селективности разделения. [c.264]

    В работе" рассмотрены возможности использования фуллеренов в качестве неподвижной фазы в. микроколоночной жидкостной хроматографии для разделения полициклических и некоторых других ароматических соединений. Хроматографические характеристики получены с применением подвижных фаз метанон, метанон-вода, метанон-дихлорметан. Исследовано разделение на неподвижной фазе Сед типичных полиароматических углеводородов нафталина, пирена, хризена, бензопирена. Показано, что С о проявляет уникальную селективность по отношению к полиароматическим углеводородам и алкилбензолам в сравнении с обычными неподвижными фазами. [c.156]


Смотреть страницы где упоминается термин Селективность разделения в хроматографии в жидкостной хроматографии: [c.9]    [c.13]    [c.198]    [c.21]    [c.75]    [c.332]    [c.599]    [c.24]    [c.91]    [c.251]    [c.454]    [c.317]    [c.11]    [c.26]    [c.154]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Разделение селективность

Селективность разделения в хроматографии

Селективность разделения в хроматографии в газо-жидкостной

Селективность разделения в хроматографии в жидкостно-адсорбционной

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография разделение

Хроматография селективность

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте