Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиакаты свойства

    Водородистые соединения. Их электролитическая и восстановительная характеристика. Методы получения. Аммиак. Нитриды и фосфаты. Аммоний как комплексный ион. Соли аммония и их химические свойства. Аммиакаты. [c.250]

    Общие схемы анализа катионов ill группы. Известно несколько схем анализа катионов III группы, которые отличаются друг от друга главным образом методами разделения их на отдельные подгруппы. В их основе лежит различие в химических свойствах гидроксидов, сульфидов, устойчивости комплексных ионов, в частности аммиакатов, и некоторых других. В ходе дальнейшего изложения будут подробно рассмотрены пероксидный и аммиачный методы. [c.275]


    Кислотный характер координированного аммиака, метиламина, этилами-на и т. п. — вполне закономерное явление. В водном растворе щелочные свойства указанных веществ обусловливаются равновесием N[ 3 + Н20 1МН4 -1-4-ОН , т. е. в растворе происходит присоединение к аммиаку протона, причем координационное число азота становится равным четырем. Одновременно освобождается эквивалентное количество гидроксоионов. В комплексных аммиакатах координационное число азота насыщается за счет координирования аммиака тяжелым металлом и наиболее существенны свойства аммиака как водородного соединения. Интересно, что если в молекуле координированного амина координационное число азота не насыщено, то оно может быть пополнено за счет присоединения кислоты. В этом случае проявляются свойства аммиака как основания. Л. А. Чугаевым и М. С. Григорьевой были выделены соединения с гидразином, взаимодействующие с кислотами с образованием аммонийных солей  [c.283]

    Ill группа. В этой группе бор по химическим свойствам сильно отличается от других элементов. Это объясняется малым радиусом атомов бора, и ион В имеет сильное электрическое поле и обладает большой поляризующей способностью. В бинарных соединениях бор проявляет большое сродство к кислороду и меньшее к галогенам. Эти свойства бора в значительной степени проявляются и в его комплексных соединениях. Аквосоли и аммиакаты он практически не образует, так как молекулы воды и аммиака в сильном электрическом поле атомов бора подвергаются диссоциации с отщеплением протона. [c.393]

    Сам я из всей совокупности сведений о растворах,— писал Д. И. Менделеев,— извлек то убеждение, что связь растворителя и растворенного тела вполне химической природы . Это подтверждалось, во-первых, образованием в растворах определенных соединений (гидраты, алкоголяты, аммиакаты) во-вторых, тем, что во многих случаях растворение сопровождалось явлениями, ха-, рактерными именно для химических соединений (выделением теплоты, резким изменепием физических свойств растворов) в-третьих, тем, что существуют определенные твердые кристаллические соединения (например, СаСЬ бНзО и др.), и, наконец, образованием соединений с кристаллизационной водой. Легкость, с которой многие вещества кристаллизуются из водного раствора в виде гидратов, естественно, указывала на существование этих соединений в самом водном растворе. Трудно, одпако, было установить, в каком количестве подобные гидраты существуют в растворе и как они взаимодействуют со средой. [c.303]


    Аммиакаты и аминаты состава [Си (КНз)4] (ОН)з, [N1 (КНз)б1 (ОН) и [Со(Еп)з] (ОН)л проявляют свойства сильных оснований. Это объясняется тем, что плотность заряда комплексного иона, 1 [апример [Си (МНз)41 , в связи с ростом его радиуса уменьшается по сравнению с Си + в Си(ОН)з, а потому ослабляется связь с ионами ОН". [c.198]

    Между элементами вертикальных столбцов проявляются отдельные черты и более близкого сходства. Например, для всех членов ряда Со, НЬ, 1г (в противоположность остальным элементам группы) характерно образование аммиакатов типа [Э(ЫНз)б]Хз. Члены ряда Ре, Ни, Оз являются особенно активными катализаторами при синтезе аммиака из элементов, а N1, Рс1 и Р1 — при реакциях присоединения водорода к органическим соединениям. Для Ре, Ки и Оз кислородные соединения характернее сернистых, тогда как в ряду N1, Рё, Р1 наблюдается обратное. В этом, равно как и в некоторых других отношениях. Ре, Ки и Оз похожи на Мп, Тс и Ке, а N1, Р(1 и Р1—на Си, Ад и Аи. По своим химическим свойствам элементы триад являются таким образом переходными между примыкающими к ним элементами подгруппы марганца, с одной стороны, и подгруппы меди — с другой.  [c.453]

    Вся аппаратура, применяемая при получении аммиакатов на основе аммиачной селитры, изготовляется из алюминия или нержавеющей стали. Прн изучении свойств аммиакатов различного состава было установлено, что аммиакаты на основе аммиачной селитры вызывают более интенсивную коррозию стаЛи, чем аммиакаты, в которых наряду с аммиачной селитрой содержится кальциевая селитра. Поэтому целесообразно применение аммиакатов примерно следующего состава 20% МНз, 30% МН ЫОз, 27,7% Са(МОз)г, 22,3% НгО. [c.245]

    Б табл. V-1 приведены свойства выпускаемых аммиакатов. [c.211]

Таблица V-/. Свойства аммиакатов Таблица V-/. Свойства аммиакатов
    При аммонизации суперфосфата из фосфоритов Каратау аммиакатами аммиачной селитры или карбамида можно получить сложное гранулированное удобрение с хорошими физическими и агрохимическими свойствами, содержащее 20—21% питательных веществ, в том числе 5—6% азота 292,293 [c.82]

    Данные о некоторых свойствах аммиакатов, применяемых в США, приведены в табл. 106. В табл. 107 и 108 приведены составь  [c.631]

    Корреляция адсорбционных свойств с прочностью соответствующих аммиакатов [c.157]

    В нервом случае образуются соли типа аммонийных солей с ацидокомплексами во втором — соединения типа аммиакатов, наконец, возможно образование смешанных комплексов, содержащих оба адденда внутри координационной сферы. Рассмотрение свойств этих соединений показывает, что между ними имеется много общего — соединения такого типа часто трудно растворимы в воде, хорошо извлекаются неводными растворителями, интен- [c.114]

    Леа Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, а 1895 г, окончил Московский университет. В 1904 — 1908 г. — профессор Московского высшего технического училища, в 1908 —1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изуче нием химии комплексных соединений переходных металлов, в особенности метал- лов платиновой группы Открыл много новых комплексных соединений, важных в теоретической и практическом отношениях. Чугаев впервые обратил внимание иа особую устойчивость 5- и 6-члениых циклов во внутренней сфере комплексных соединеинй и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одннм нз основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов I СССР. Созда./ большую отечественную школу химикоз-неоргаников, работающих а области изучения химии комплексных соединений, [c.588]

    Электростатические представления оправдываются для целого ряда других комплексных соединений, содержащих дипольные молекулы. Молекула воды (диполь, характеризующийся большой жесткостью) обладает дипольным моментом, равным 1,8. Дипольный момент молекулы ЫНз равен 1,5 (по сравнению с Н2О отличается меньшей жесткостью). Так как величина дипольного момента ЫНз меньше, чем у Н2О, то аммиакаты должны быть менее устойчивыми, чем гидраты. Действительно в случае соединений лития дело обстоит именно таким образом. Однако в некоторых случаях могут наблюдаться обратные соотношения. Часто устойчивость соединений нельзя объяснить с позиций электростатических представлений. Например, известно большое количество соединений с формально нульвалентным центральным атомом. Сюда относится ряд комплексных соединений платины, палладия и других металлов, например комплекс палладия с фенилизонитрилом, для которого были изучены реакции замещения с триарилфосфитами. Подобные реакции не могут сопровождаться окислительно-восстановительными процессами, так как оба вступающих в реакцию вещества характеризуются восстановительными свойствами. [c.239]


    Рассматривая влияние природы аддендов на кислотно-основные свойства комплексов, необходимо учитывать, что рассмотренная закономерность изменения кислотных свойств при переходе от аква- к амминокомплексам оправдывается не всегда. Например, этнлендиаминовые комплексы более сильные кислоты, чем аммиакаты, в то время как МНз более слабое основание, чем МН2—СН2—СН2—МНз. [c.289]

    Реакцию образования аммиаката меди можно записать и в таком виде u +- -4NHз = [ u(NHз)4] +. При этом подразумевается, что комплексный ион образуется из отдельных негидрати-рованных ионов меди, находящихся в газообразном состоянии, и газообразного аммиака. В этом случае изобарно-изотермический потенциал образования комплексного иона равен сумме стан-дартны < изобарно-изотермических потенциалов ионов меди и аммиака (с обратным знаком). Однако и при таком в принципе правильном подходе возникают трудности, связанные с тем, что не во всех случаях известны термодинамические свойства исходных веществ. Поэтому в настоящее время способность элементов к комплексообразованию определяют различными косвенными методами. Ниже дается качественное описание способности элементов к комплексообразованию по группам периодической системы. [c.392]

    Элементы подгруппы кальция обладают сравнительно небольшими комплексообразующими свойствами, и прочные соединения они дают только с комплексонами, например с этилен-диаминтетраукеусной кислотой, что вообще характерно и для других двухвалентных ионов. Аммиакаты щелочноземельных металлов общей формулой [Ме(ЫНз)в]Х2 получают действием аммиака на безводные галогениды. В водном растворе они подвергаются гидролизу. [c.393]

    Проведение опыта. К раствору соли кадмия в бокале прилить раствор щелочи. Выпадает белый осадок гидроокиси кадмия. Жидкость с осадком разделить на три части. К первой части прибавить соляную кислоту наблюдается растворение осадка, ко второй — раЬтвор щелочи осадок не растворяется, так как гидроокись кадмйя проявляет только основные свойства. К третьей части осадка прилить избыток раствора аммиака гидроокись кадмия растворяется с образованием бесцветного раствора комплексного аммиаката кадмия. [c.146]

    Однако и от 5той теории нельзя ожидать объяснения свойств всех комплексных соединений. В случае ионных комплексных соединений с помощью ТКП получают хорошие количественные результаты. Но эти результаты становятся неудовлетворительными, если связь приближается к ковалентной она не может объяснить образование карбонилов металлов, аммиакатов и др. [c.201]

    Неподеленная электронная пара азота сообщает молекуле аммиака свойства донора. Поэтому для аммиака характерна способность образовывать связи по донорно-акцепторнму механизму. Комплексные соединения, содержащие молекулы аммиака, называют аммиакатами. Различают аммиакаты меди [Си(ННз)1)50 , кобальта l o(NHз)вl l2, кальция [Са(ЫНэ)в]С12 и др. [c.344]

    Константа нестойкости Hg(ЫН,,), -+ /С 5,3-10 -", р7( 49,3. Свойства образовывать растворимые аммиакаты наиболее слабо выражены у ртути (II). Ввиду пониженной способности к образованию растворимых аммиакатов ртуть (П) южeт неполностью попасть в группу растворимых аммиакатов. [c.150]

    Кальций в жидком аммнаке растворяется в незначительном количестве, но ои легко образует аммиакат [188]. Последний можио получить также, пропуская сухой газообразный аммиак над стружками кальция [296, 297] Для восстановления органических соединений аммиакат кальция можно использовать без жидкого аммиака прн комнатной температу ре [201]. Восстанопи-тельные свойства аммиаката кальции связаны с его по степенным разложением [15, 201]- [c.99]

    Карбиды щелочных металлов К2С2, КагСг, 7Л2С2 самовозгораются на воздухе и даже в атмосфере СО2 и ЗОг. Органические соединения, содержащие мышьяк, сурьму, фосфор (производные АзНз, ЗЬНа и РНз), иа воздухе самовозгораются. Этим же свойством обладают аммиакаты щелочно-земельных металлов. [c.119]

    Аммиакат такого состава содержит 31,9% азота, его плотность при 20 °С равна 1,25 т/м давление паров при 20—30 °С составляет примерно 0,1 МПа. Аммиакаты — более коицеитрированные жидкие азотные удобрения, чем аммиачная вода особенно необходимы для аммоиизации суперфосфатов и тукосмесей, позволяющей улучшить их физические свойства и агрохимическую эффективность. К числу таких аммиакатов можно отнести аммиакаты на основе аммиачной селитры и карбамида (табл. П,54 и П,55), а также иа основе аммиачной и кальциевой селитры (табл. П,56). [c.245]

    Существенным недостатком некоторых жидких удобрений является их корродирующее действиеВ особенности это относится к растворам аммиакатов нитрата аммония, обладающим повышенными коррозионными свойствами по отношению к черным металлам. Это затрудняет производство, хранение, транспортировку и внесение удобрений в почву, так как связано с применением дорогостоящих материалов (нержавеющей стали, алюминия и др.). [c.628]

    Метод ВС был использован и для объяснения физико-химических свойств комплексных соединений. Их образование рассматривалось как результат донорно-ак-цепторного взаимодействия между комплексообразова-телем и лигандом. Например, образование аммиаката цинка можно представить схемой [c.270]

    Общие реакции — реакции, аналитические сигналы которых одинаковы для многих ионов. Применяемый реагент также называют общим. При анализе смеси катионов в качестве общих реакций используют осаждение гидроксидов, карбонатов, сульфатов, сульфидов и т. д. Полученные осадки обладают различной растворимостью в кислотах, основаниях, растворах аммиака. На основании этих свойств можно создать определенные условия (pH среды, присутствие солей аммония), когда с помощью данного общего реагента осаждаются только некоторые ионы. В этом случае общий реагент становится групповым. Например, осадки фосфатов образуют подавляющее больши ство катионов (поэтому фосфат аммония является общим реагентом), но фосфаты ряда катионов растворимы в растворе аммиака с образованием аммиакатов (растворимых комплексов). Поэтому фосфат аммония в присутствии NH3-H2O осаждает определенную группу катионов (Ва +, 5г +, Са +, Mg +, Fe +, Fe +, А1 +, Сг +, Bi +) и из общего реагента становится групповым, а реакцию называют групповой. [c.110]

    Обнаружена корреляция между адсорбционной емкостью цеолитов по парам воды и энергией гидратации соответствующих катионов. По адсорбируемости аммиака порядок расположения катионных форм цеолитов соответствует ряду прочности соответствующих аммиакатов. В случае цеолитов с катионами переходных металлов, обладающих сильными акцепторными свойствами, возникает донорно-акцепторное взаимодействие ароматических углеводородов с такими ионами и т. д. Насыщенные углеводороды и благородные газы адсорбируются на цеолитах неспецпфиче-ски. Теплота несиецифической адсорбции растет с увеличением радиуса катиона, комненсирующего заряд решетки. [c.206]

    Хлорид кальция Для осушки газов рекомендуется использовать выпускаемый промышленностью гранули рованный прокаленный хлорид кальция Стандартный размер гранул гарантирует невысокое сопротивление газовому потоку (Хлорид кальция регенерированный в лаборатории путем прокаливания лучше применять для осушки жидкостей, но не газов ) Область примене ния хлорида кальция ограничена его химической актив ностью он не пригоден для сушки аммиака и аминов, поскольку образует аммиакаты С другой стороны, пользуясь этим свойством, можно очищать газы от незначительных примесей аммиака, летучих аминов, а также спиртов Нельзя применять хлорид кальция для сушки газообразных НВг, HI поскольку они взаимо действуют с осушителем с образованием НС1 При осушке кислых газов (НС1, СЬ, SO2 и др ) следует иметь в виду, что хлорид кальция может содержать в качестве примеси карбонат — в этом случае осушае мый газ загрязняется СО2 При проведении особо точных работ, когда нежелательно загрязнение осуша емого газа воздухом, использование прокаленного хлорида кальция, как, впрочем, и других крупнопо ристых осушителей, создает определенные проблемы — присутствующий в порах воздух выделяется в неболь ших количествах в течение длительного времени [c.150]

    При этом для аминов с более сильными основными свойствами (пиридин, хинолин) более характерно образование комплексов типа аммиакатов. Более слабые основания (антипирин, дианти-пирилметап) преимуш,ественно образуют соединение типа аммонийных солей с комплексными металлокислотами. [c.119]

    Эти катализаторы обычно получают пропиткой Н2Р1С1б. Примеров использования ионообменных свойств углерода, связанных с присутствием на его поверхности кислородсодержащих групп, известно пока немного, хотя, как это показано для аммиакат-ионов палладия [60], возможен обмен ионов [Р1(ЫНз)4] с поверхностными карбоксильными группами окисленного углеродного носителя. [c.204]


Смотреть страницы где упоминается термин Аммиакаты свойства: [c.288]    [c.287]    [c.236]    [c.491]    [c.530]    [c.25]    [c.330]    [c.551]    [c.237]    [c.176]    [c.152]   
Технология азотных удобрений (1956) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиакаты

Кислотные свойства аммиакатов и частоты деформационных колебаний координированных молекул аммиака

О кислотных свойствах аммиакатов и аминатов четырехвалентной платины

Серебро аммиакат-ион как свойства III

Серебро аммиакат-ион получение и свойства III

Физико-химические свойства аммиакатов



© 2025 chem21.info Реклама на сайте