Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование комплексных ионов и потенциалы восстановления

    При образовании комплексных соединений окисленная и восстановленная формы ведут себя неодинаково. Повышение степени окисления элемента увеличивает его электроотрицательность и усиливает различия в способности к комплексообразованию неодинаково для окисленной и восстановленной форм. Например, электроотрицательность марганца (У1Г) 2,5, а марганца (П) 1,4, хрома (VI) 2,4, а хрома (III) 1,6. Поэтому комплексообразование понижает активность окисленной формы аок в большей степени, чем активность восстановленной формы авс Так как окислительный потенциал определяется отношением актИВНОСТеЙ ЭТИХ ДВух форм йок/йВс, ТО окислительно-восстановительный потенциал всей системы понижается. Например, =+0,8 в для пары ионов Ре +/Ре . Если ввести в раствор цианид калия, то образуются два комплексных соединения гексациано- [c.111]


    Окислительно-восстановительные свойства комплексных соединений широко используются в аналитической химии. Реакции окисления—восстановления могут проходить как с центральным ионом, так и с лигандами. При образовании комплексных соединений окислительно-восстановительный потенциал центрального иона уменьшается. Например, стандартные потенциалы свободных ионов и связанных в комплекс изменяются так  [c.166]

    Полученное уравнение — основное для окислительного потенциала систем, в которых, наряду с переносом электронов, протекают другие процессы, приводящие к образованию комплексных соединений. Уравнение выражает зависимость окислительного потенциала от состава раствора. В общем случае число переменных включает т° концентраций комплексов окисленной формы т концентраций комплексов восстановленной формы с учетом концентрации аквакомплексов обеих форм концентрации (активности) лиганда А , иона оксония НдО активность воды и исходные концентрации окисленной и восстановленной форм, равные их общим концентрациям С и С. Число этих переменных равно т - т 5. [c.132]

    При введении иона металла в окислительно-восстановительную систему, составленную из двух кислот Н К (окисленная форма) и Н К (восстановленная форма), может происходить образование комплексных соединений с этими кислотами или продуктами их диссоциации. Комплексообразование, естественно, отразится на характере зависимости окислительного потенциала или окислительного напряжения от pH как параметра свойств системы. [c.218]

    Для гальванической ванны, к которой относятся данные приведенные на рис. 6.4, потенциал меди составляет +0,042 В. Длительное нахождение деталей в гальванической ванне приводит лишь к слабому растворению меди, сопровождающемуся восстановлением растворенного кислорода в качестве катодной реакции. Это растворение не мешает получению удовлетворительного никеля покрытия и полностью подавляется в случае погружения деталей в ванну под током. Проблема нанесения подслоя меди решается путем использования комплексной медноцианистой ванны. Применение ванны кислого меднения поставило бы еще более сложные проблемы, чем применение ванны никелирования из-за более низкого значения pH и большей окислительной способности двухвалентных ионов меди. В щелочных растворах цианидов цинк устойчивее меди и поэтому не вытесняет ее из медноцианистых растворов. Цинк, погруженный в медноцианистую ванну, может корродировать с образованием либо цинката, либо комплексного иона цианида цинка 2п(СК)4 . В этом случае возможно протекание одной из двух катодных реакций восстановление растворенного кислорода или выделение водорода. Однако сильная поляризация предотвращает быстрое растворение, создаются такие же условия, как в случае меди в никелевых ваннах. Можно получать хорощее покрытие. [c.339]


    Эффект действия хромат-ных пигментов возрастает с увеличением их растворимости в воде, т. е. с ростом степени ионизации. Растворимость хроматов металлов 2п, 5г, Ва, РЬ соответственно равна 1,1 0,6 0,001 и 0,00005 г/л. Таким образом, наиболее ценными в противокоррозионном отношении и вследствие этого самыми распространенными являются хроматы цинка — цинковые крона. При воздействии воды они образуют растворы с pH 7,0—7,6 и концентрацией хромат-ионов З-Ю моль/л и более. Этой концентрации оказывается достаточно для того, чтобы сместить потенциал железа в нейтральной среде до +0,3- + 0,5 В, при котором наступает его пассивное состояние (рис. 5.13). Механизм действия хроматных пигментов связан с адсорбцией хромат-ионов на поверхности металла, восстановлением хрома из шестивалентного до трехвалентного состояния и образованием нерастворимых сложных комплексных соединений Ре + и Сг +. При этом адсорбируются комплексные ионы, образующиеся при действии воды на хроматные пигменты  [c.171]

    Облегчающее действие добавки серной кислоты или сульфата аммония на скорость восстановления ионов рения нельзя объяснить также образованием комплексных соединений. Если энергетически более выгодным является образование стабильных комплексных соединений, то для их восстановления требовался бы более отрицательный потенциал. Однако восстановление ионов рения не затрудняется, а наоборот, облегчается. Поэтому предположение о комплексообразовании маловероятно. [c.139]

    Цианистые электролиты. В цианистом электролите медь в виде одновалентных ионов входит в состав комплексных анионов Си(СК) , Си(СМ)з и других. Выделение металла происходит в результате непосредственного восстановления комплексного аниона на катоде, для чего требуется большая энергия активации процесса. Поэтому в цианистых электролитах катодная поляризация резко выражена, что обусловливает их высокую рассеивающую способность и образование осадков с мелкокристаллической структурой. Цианистые электролиты позволяют осаждать медь непосредственно на сталь, цинк и их сплавы, так как вследствие высокого электроотрицательного значения потенциала контактного вытеснения меди на них не происходит и электролитическое покрытие прочно сцепляется с основой. [c.35]

    После сближения на критическое расстояние электрическое поле помогает движению поляризованного комплекса и разряду серебра, а затем отталкивает освободившиеся анионы цианиды. Электроосаждение покрытий из растворов комплексных цианидов имеет ряд преимуществ. Снижение потенциала осаждения имеет большое значение при нанесении благородных металлов на неблагородные подложки, так как позволяет избежать сильной коррозии катода. Важный случай, связанный с применением медно-цианистой ванны, обсуждается ниже. Затрудненная диффузия комплексного аниона, энергия, необходимая для поляризации и восстановления аниона, и диффузионный барьер из-за высокой концентрации цианида вблизи катода — все это приводит к высокому перенапряжению процесса электроосаждения, что в свою очередь способствует образованию равномерных покрытий на катодах с неровной поверхностью. Ионы цианида, освободившиеся после разряда металла из комплекса, изменяют структуру покрытия аналогично действию специальных добавок и возможно, что не- [c.334]

    На фоне 0,1 М раствора нитрата натрия в отсутствие кислорода палладий дает с платиновым электродом четкую волну с потенциалом восстановления +0,38 в (нас. к. э.). В растворах соляной кислоты или хлоридов потенциал восстановления палладия сдвигается к более отрицательным значениям, что указывает на образование комплексного иона между Pd" и СГ, вероятно [Pd lJ -. [c.374]

    Изучая электродные потенциалы меди в тиосульфатных растворах, Бремер [ ] пришел к выводу о существовании иона [Си(820з),ч,] . Указанные комплексные соединения могут быть получены путем смешения растворов сульфата двухвалентной меди и тиосульфата натрия. В этих случаях образованию комплексных соединений предшествует восстановление двухвалентной меди до одновалентной. С целью изучения происходящих здесь окислительно-восстановительных процессов мы измерили потенциал гладкого платинового электрода, погруженного в насыщенный раствор сульфата двухвалентной меди (17.83 г СиВ04 бН О в 100 мл раствора), к которому [c.744]

    Для прим ра можно привести систему Си2+- Си+ Си. Двухвалентная медь восстанавливается до одновалентной при потанциале, равном +0,17 в. Так как этот потенциал значительно отрицательнее потенциала, восстановления Си+->-Си (+,0,5 1 1в), то ионы одновалентной меди практически не могут существовать возле электрода в заметной концентрации. Однако если В(Веоти в раствор сульфата меди вещество, повышающее устойчивость ионов одновалентной меди вследствие образования с ними комплексного соединения (аммиак или ионы хлора), то потенциал восстановления такого комплекса станет более отрицательным и на поляризационной кривой получатся две волны. [c.373]


    Полученное уравнение — основное для окислительного потенциала систем, в которых наряду с переносом электронов протекают другие процессы, приводящие к образованию комплексных соединений. Оно выражает зависимость окислительного потенциала от состава раствора. В общем случае число переменных складывается из Шо концентраций комплексов окисленной формы, Шг концентраций восстановленной формы, включая концентрации аквакомплексов обеих форм, концентрации (активности) лиганда А , иона Н+, активности воды и исходных концентраций окисленной и восстановленной форм, равных их общей концентрации Со и Сг. Число этих переменных равно Шо + Шг + 5. Число независимых переменных меньше общего числа концентрационных переменных на число уравнений связи [(то + тг)-уравнений образования комплексов)] и равно 5. Поэтому окислительный потенциал является функцией 5 переменных, а именно Со, Сг, Н, [А] и анао- Активность воды в разбавленных растворах близка к 1 и, следовательно, число переменных уменьшается до 4. При изучении комплексообразования в смешанных растворителях и концентрированных водных растворах активность воды может заметно меняться. Тогда ее следует ввести в уравнение (Х.84). [c.623]

    Титрование иодидом калия проводят обычно с платиновым вращающимся электродом, причем лучще всего титровать по току окисления избытка иодида при +0,8 в (МИЭ). Кривые получаются очень отчетливыми и имеют форму б. Если же титровать по току восстановления ртути (II), при потенциалах +0,5 в и менее положительных возможны осложнения хода кривых вследствие некоторых побочных электродных реакций, а именно если потенциал платиновйго электрода установить равным +0,5 в и несколько ниже, до +0,3 в (МИЭ), то электрод покроется металлической ртутью. Вследствие того что при появлении избытка иодида после конечной точки титрования окислительно-восстановительный потенциал системы Hg2+/Hg резко понижается (за счет образования комплексного соединения [HgUf-), выделившаяся На электроде ртуть начинает анодно растворяться с образованием Hg2l2- На кривой титрования при этом появляется анодный участок, затрудняющий определение конечной точки". Если установить еще более отрицательный потенциал — например, +0,2 в или +0,1 в (МИЭ),— то на кривых титрования вообще не будет перелома в конечной точке, так как при таких потенциалах происходит второй катодный процесс — непосредственное восстановление ртути II из взвешенных в растворе частиц иодида ртути (II), образующихся во время титрования. В результате катодный ток понижается под конец титрования очень незначительно, так как вместо ионов ртути (II), концентрация которых убывает, появляются частицы иодит да ртути, количество которых увеличивается. Возможность непосредственного восстановления иодида ртути (II) (и его окисления, см. ниже) на платиновом электроде доказана специальными исследованиями  [c.282]

    Однако если ввести в раствор вещество, повышающее устойчиво1ть ионов одновалентной меди вследствие образования с ними комплексного соединения, например аммиак или ионы хлора, то потенциал восстановления такого комплекса становится более отрицательным и на полярограмме получаются две волны высота каждой из них соответствует одноэлектронному переходу (см. рис. 41, кривая 2). [c.70]

    В заключение следует упомянуть еще об одном методе, несколько отличающемся от других по своей сущностикак известно, цирконий образует в кислой среде растворимые комплексные соединения с перекисью водорода, восстанавливающиеся на ртутном капельном электроде при положительных значениях потенциала При добавлении купферона эти соединения разрушаются с образованием осадка купфероната циркония. Это дает возможность титровать цирконий в виде перекисных соединений. купфероном при -f0,4 в (МИЭ), т. е. при потенциале, отвечающем области диффузионного тока восстановления перекисного соединения купферон при этом потенциале не окисляется. Титрование ведут на фоне 2 М серной кислоты, поэтому потенциал окисления ртути сильно сдвинут в сторону положительных значений, что и дает возможность работать в указанной области потенциалов (как известно, потенциал меркур-сульфатного электрода составляет + 0,682 в). В начале титрования ток, обусловленный восстановлением перекисного соединения, несколько повышается. Вследствие образования растворимого комплексного соединения с купфероном в момент достижения отношения циркония к купферону, равного 1 1, ток достигает максимума, после чего понижается за счет образования осадка - купфероната циркония. Метод позволяет определять от 0,5 мг циркония в титруемом объеме и больше, при средней относительной ошибке 3,5%. Определению мешают Bqe ионы, осаждаемые купфероном в 2 AI серной кислоте. [c.356]

    Из комплексных соединений нитрилтриуксусной кислоты к этой группе принадлежит только комплекс с ионом двухвалентной меди и то лишь приблизительно, так как восстановление комплекса протекает не вполне обратимо. На рис. 9 изображены полярографические кривые 2 раствора Сц2+ в среде 0,1 М раствора НаЮз (кривая 2) и в среде 4 10 М раствора нитрилтриуксусной кислоты в ацетатном буферном растворе с pH 4,50 (кривая 2). Сдвиг потенциала полуволны меди вследствие образования комплекса составляет 0,164 в. При вычислении теоретической величины сдвига следует принять во внимание, что нитрилтриуксусная кислота при pH 4,5 существует в форме НХ -, вследствие чего для вычисления сдвига потенциала полуволны пригодно уравнение [c.55]

    Иная ситуация наблюдается в кислородсодержащих подземных водах с высокими концентрациями органических веществ гумусового ряда. Г.А. Соломин показал, что в равновесии с осадком гидрокиси железа в растворе может быть всего 2,9-10" моль/л РеОНз. Это означает, что при pH > 5 после осаждения гидрокисей железа в равновесии с этим осадком в растворе может присутствовать только 17 мкг/л Ее. Но в подземных водах, содержащих высокие концентрации органических веществ гумусового ряда (фульво- и гуминовые кислоты), концентрации железа всегда превышают эти расчетные концентрации и достигают п - п-10 мг/л. При этом установлено, что в тех случаях, когда не учитывается комплексообразование железа с органическими веществами, степень отклонения реальных концентраций железа в подземных водах от расчетных и соответственно степень отклонения реальных ЕЬ от расчетных зависят от концентраций этих органических веществ. Причина заключается в том, что в результате образования устойчивых комплексных соединений с органическими веществами все меньшая часть активности Ре " становится доступной для процессов гидролиза и его кислотно-щелочные и окислительно-восстановительные диапазоны существования в подземных водах расширяются. Известно, что в присутствии оксалат-иона, образующего с Ре устойчивые комплексные соединения Ре(Ох) , стандартный потенциал системы основательно снижается, а pH существования геохимически значимых концентраций Ре в растворе расширяется до 7. Аналогично фульвокислоты могут удерживать Ре " в околонейтральных подземных водах. Таким образом, в присутствии органических веществ значения окислительно-восстановительного потенциала системы железа достаточно сильно снижаются. Физико-химическими причинами являются следующие окислительные потенциалы, положенные в основу построения ЕЬ-рН-диаграмм Ре—НгО, относятся только к равновесным условиям, когда в растворе присутствуют только Ре , Ре"", ЬТ, ОН". Под влиянием присутствующих в подземных водах органических веществ, способных образовывать с окисленной или восстановленной формой железа комплексные соединения, концентрации этих форм изменяются в неравной степени. В этом случае формула (1) приобретает вид [c.44]


Смотреть страницы где упоминается термин Образование комплексных ионов и потенциалы восстановления: [c.254]    [c.453]    [c.63]    [c.57]    [c.260]    [c.95]    [c.191]    [c.166]    [c.269]    [c.563]    [c.249]    [c.289]    [c.166]    [c.240]   
Смотреть главы в:

Основные законы химии. Т.2 -> Образование комплексных ионов и потенциалы восстановления




ПОИСК





Смотрите так же термины и статьи:

Восстановление иона

Восстановление ионов

Ионные образование

Ионный потенциал

Ионов образование

Ионы комплексные

Ионы образование

Потенциал восстановления

Потенциал образования



© 2025 chem21.info Реклама на сайте