Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан покрытие на железе

    Жидкий бром взаимодействует при комнатной температуре со многими металлами. К ним относятся медь, серебро, алюминий, олово, титан, хром, железо, углеродистые стали и т.д. Для хранения жидкого брома предложены стальные емкости, гомогенно освинцованные внутри. Применяют также покрытия из чистого никеля. [c.32]

    Покрытие железа и меди титаном может быть осуществлено также электролизом с применением растворимых Zn-Ti анодов. Процесс протекает при 300° при катодной плотности тока 0,5 а/см- [c.344]


    Титан явился своеобразным лекарством XX в. для исправления допущенной в XIX в. ощибки. Во время ремонта Акрополя в 1896—1933 гг. для соединения кусков мрамора архитрава и портиков использовали стальные болты и балки, хотя древнегреческие строители использовали для этого 24 века тому назад железо, покрытое свинцом. К 1970 г. эти стальные крепления заржавели и возникшее от этого увеличение (расширение) их привело к растрескиванию мрамора. Выход из создавшегося положения — замена стального крепления титановым, устойчивым к коррозионному воздействию. [c.510]

    Особенно чувствительны к водородной хрупкости металлические покрытия, поскольку она ухудшает их механические характеристики и приводит к растрескиванию вследствие уменьшения эластичности. К водородной хрупкости чувствительны многие металлы железо и стали, никель, свинец, цинк и титан. При горячем травлении серной кислотой диффузия усиливается, а в случае соляной кислоты ослабевает. [c.59]

    Титан как сильно электроотрицательный металл, является активным катодом в гальванической паре с железом, медью, алюминием, цинком. Контакт с титаном ускоряет коррозию углеродистой стали, латуни, алюминиево-магниевых и медно-никелевых сплавов. В паре с платиной титан пассивируется, что позволяет использовать его как основу под покрытие платиной и другими благородными металлами [36]. [c.112]

    Титановые покрытия наносят на железо и никель, используя расплав его хлоридов. в среде аргона при 900-1100 С. На титан и его сплавы после соответствующей подготовки можно наносить гальванические покрытия различными металлами и сплавами. [c.19]

    Из водных растворов титан осаждается на такие металлы, как медь, железо, никель, свинец и платина, толщина покрытия не более 3 — 4 мкм, после чего его выделение прекращается. При этом наблюдается диффузия тонкого титанового покрытия в металл основы при нагревании до 700°С или при длительной выдержке (1,5 — 2 года) при комнатной температуре. Так, на поверхности меди установлено наличие сплава, содержащего [c.83]

    Никелевые покрытия наносят на медь, железо и их сплавы, а также на титан, вольфрам и другие металлы. На стальные детали наносят подслой меди. Покрытия никелем могут быть блестящими, износостойкими, черными. Помимо никелевых широко применяют покрытия такими сплавами, как N1 - Со, N1 - 2п, N1 - Си, № -Ки, N1 - Ре и др. [c.112]

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Наиболее низкое перенапряжение водорода на стали, содержащей 5% никеля, и на железе, покрытом сульфидом никеля. Предложено активировать стальные катоды напылением металлов с низким перенапряжением (Со, N1, Мо, У, Мп, Та, НЬ), нанесением сплава никеля или кобальта с титаном, лантаном, магнием. Поскольку на катодах с развитой поверхностью устанавливается более низкий потенциал, предложена пескоструйная обработка железа, получение активного слоя плазменным или пламенным нанесением смеси никеля или кобальта с легко растворяющимися в щелочах металлами, например алюминием или цинком. После выщелачивания этих металлов покрытие становится пористым и очень активным. [c.46]

    См. также ст. Железа сплавы, Защитные покрытия. Коррозия металлов. Кислотоупорные замазки, Керамика, Пассивность металлов. Хром, Никель, Титан и др. [c.322]

    Фокин [64] применил пористый графитовый цилиндр, через который продавливался спиртовой раствор олеиновой кислоты. Для нанесения слоя активного никеля в католит были добавлены соли никеля, из которых никель осаждался на катоде в виде тонкодисперсной никелевой губки. Можно также в качестве катода применять никелевую сетку, покрытую гальваническим никелем. В последнем случае восстановление олеиновой кислоты протекает с выходом по току выше 80%. Попытки электровосстановления изолированных этиленовых связей в различных ненасыщенных органических кислотах на свинце, ртути, железе, меди и цинке, а также на катодах, покрытых губчатым оловом, молибденом, титаном и ванадием [61], не дали положительных результатов. [c.156]

    В частности, особый интерес за последние годы приобрело электролитическое получение жаростойких сплавов [3—5] в связи с тем, что покрытия из жаростойких сплавов имеют значительные экономические и конструктивные преимущества. Вместо изготовления всей детали из дорогостоящего и тяжелого материала можно нанести электролитическое покрытие сравнительно небольшой толщины на другие, более легкие и дешевые материалы. Кроме того, многие редкие и необычные материалы, которые при электролизе водных растворов не удается получить в чистом виде, можно осадить в виде сплавов с другими металлами [3, 6], например, сплавы вольфрам — железо, вольфрам—никель, вольфрам — кобальт, молибден — никель, титан — железо и др. [c.176]

    Другие элементы, например, азот, углерод, тантал, медь, ниобий, золото, титан, молибден, мышьяк, цинк, вольфрам, алюминий, ванадий, марганец, хром, кремний и бор, расположенные слева от указанной границы, могут образовывать диффузионные покрытия, причем диффузионные слои кремния, бора и других элементов, полученные на железе и стали, повышают механические свойства их поверхности. [c.115]

    Белые титановые эмали требуют окислительных условий варки, которые создаются не только подачей в печь избытка воздуха, но также и введением в состав шихты больших количеств селитры. При восстановительных условиях варки окись железа, неизбежно присутствующая в виде загрязнений в шихтных материалах, переходит в закись, которая образует с титаном сильно окрашенные в грязно-желтый цвет соединения. При сильно восстановительных условиях варки двуокись титана частично восстанавливается до низших кислородных соединений, окрашивающих гранулы эмали в фиолетовый цвет, а эмалевое покрытие — в серый. При окислительных условиях варки допустимо относительно высокое содержание окиси железа, порядка 0,1—0,2%. [c.54]

    На основе никеля получают электролитические сплавы с железом, кобальтом, цинком, хромом, оловом, титаном, рением. Сплавы с металлами подгруппы железа представляют особенный интерес, благодаря своим электромагнитным свойствам. Осадки типа пермаллоя, содержащие 80 % N1 и 20 % Ре, характеризуются высокой магнитной проницаемостью, а сплавы N —00 — большими значениями коэрцитивной силы. Такие покрытия применяют при изготовлении ряда полуфабрикатов в радиотехнической и электронной промышленности. [c.178]

    Борьба с коррозией — большая народнохозяйственная задача. Исследование механизма, скорости коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Металлы от коррозии защищают, нанося на них покрытия из более стойких в данной среде металлов, покрытия из лаков, красок, эмалей и других материалов. Некоторые металлы, например, железо, хром, никель, кобальт, алюминий, титан, тантал, вольфрам, ниобий, под влиянием кислорода и в различных окислительных средах способны пассивироваться, т. е. переходить в состояние повышенной коррозионной устойчивости (в условиях, когда с термодинамической точки зрения они являются вполне реакционноспособными), вызванное торможением анодного процесса. Способность пассивироваться широко используется для защиты этих металлов от коррозии и для придания сплавам повышенной коррозионной стойкости методом легирования. Так, введя в сплавы на основе железа хром, никель, алюминий и неко- [c.176]


    Меркурий. Непосредственных данных о составе поверхности материала этой планеты нет. По данным телевизионной съемки, поверхность Меркурия во многом сходна с поверхностью Луны. Обнаружены многочисленные кратеры, поперечник которых от 0,8 до 120 км, а также продолговатые узкие долины и расположенные на далеком расстоянии друг от друга хребты. Меркурий имеет низкое отражение в области видимого света (альбедо 0,056), что указывает на темный материал его поверхности. По данным изучения отражения в широком диапазоне спектра, поверхность Меркурия покрыта луноподобным грунтом, богатым стеклом с повышенным содержанием железа и титайа. Преобладающим минералом, вероятно, может быть пироксен, который под воздействием метеоритных ударов превратился в стекло. В общем тепловой фон Меркурия имеет такой характер, что минералы, богатые титаном и железом, присутствуют в значительной мере в стеклообразном состоянии. [c.125]

    В целях экономии часто применяот катод, представляющий ообой металл - носитель, покрытый слоем платины. Металлом - носителем могут быть серебро, медь, бронза, купроникель, железо, свинец, латунь, титан. Стоимость такого катода составляет примерно 30 % стоимости оистемы анодной защиты. Размеры их невелики (6,2Б ом в длину и 4 сы в диаметре), поатому такие катоды можно применять в аппаратах небольших объёмов. [c.78]

    При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингообразования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования. [c.38]

    Наконец, пористые металлические катализаторы можно получать непосредственным спеканием порошкообразного металла, иногда с использованием других веществ, например буры, которая способствует сохранению пористости образца. Образующие порошок частицы металлов имеют размер порядка микрометра такие порошки могут на воздухе самоокисляться (т. е. обладать пирофорными свойствами), что затрудняет работу с ними. Монолитные пористые катализаторы, полученные описанным способо.м, применяются как электрокатализаторы в топливных элементах некоторые аспекты такого их применения обобщены Бэконом и Фраем [150]. Обычно используемый водородный электрод щелочного топливного элемента состоит пз пористого никеля, по-видимо.му сплавленного с другими металлами, например железом, молибденом или титаном, и для повышения электрокаталитической активности покрытого дисперсными металлами— никелем, платиной или палладием, нанесенными обычным методом пропитки и восстановленными водородом. На практике для регулирования процессов переноса жидкости и газа необходим тщательный контроль пористой структуры электродов. [c.232]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]

    ПИРОМАТЕРИАЛЫ (от греч. лир -огонь) — материалы, получаемые в результате химической кристаллп.за-ции нз газовой фазы прп повышенных т-рах. П. подразделяют на пиролитические, образующиеся при термической диссоциации газообразных соединений, и газофазные (реакции ме к-ду двумя и более соединениями). Их получают в виде покрытий (см. Газофазные покрытия), композиционных материалов и порошков. Практически все хим. элементы, большинство важнейших тугоплавких соединений п мпогие вещества с особыми фпз. св-вами получают в виде П. Различают П. углеродные (важнейшие сажа, пирографит, эпитаксиальные слои на алмазах) металлические (важнейшие йодидные титан, цирконий и гафний, фторидные — вольфрам, карбонильные — железо, никель, молибден и вольфрам) тугоплавкие (важнейшие карбиды титана, вольфрама, ниобия, тантала, кремния и бора, нитриды титана, ниобия, алюминия и бора, окислы алюминия, циркония, титана, крем- [c.177]

    ТИТАНИРОВАНИЕ — нанесение на поверхность металлических и неметаллических изделий покрытий из титана или диффузионное насыщение поверхности титаном. Повышает коррозионную стойкость изделий из желееоуглеродистых сплавов, латуни, цинка и др. металлов и сплавов. По отношению к железу титан является катодом и при незначительной пористости покрытия эффективно защищает сталь. Пористость титановых покрытий зависит от предварительной обработки поверхности и условий осаждения. При прочих равных условиях она уменьшается с ростом толщины покрытия. Т. осуществляют термическим испарением, диффузионным насыщением, газопламенным и плазменным напылением, термодис-соционным методом, электролитическим осаждением или плакированием. Термическое испарение титана в вакууме — наиболее часто используемый метод. Этим методом титановые покрытия значительной толщины (десятки и сотни микрометров) наносят на полосовую сталь и изделия различной конфигурации при сравнительно низкой т-ре поверхности ( 500° С). Для получения покрытия титан нагревают в вакууме (Ю " — 10 мм рт. ст.) до т-ры, обеспечивающей интенсивное его испарение ( 1900° С), после чего он осаждается на подогретую поверхность в виде однородного кристаллического слоя (см. также Вакуумные покрытия). На полированной стали такой слой представляет собой зеркальное декоративное покрытие, поверхность которого при небольшой толщине почти полностью повторяет ее рельеф. Термическое испарение титана в [c.571]

    Применение рения — очень дорогого и редкого металла [15, 37, 381—может быть оправдано только в том случае, если он обеспечивает значительные преимущества перед другими металлами и сплавами. В настоящее время не ставится вопрос об использовании рения для работы в окислительных средах. Его применяют лишь в качестве покрытия различных металлов — меди, никеля, алюминия, железа, титана, молибдена, вольфрама и др.. Осаждение рения или сплавов Ке—N1, Ке—Сг, Ке—N1—Сг на медь, латунь, титан, хром, хромникелевые сплавы производится электролитическим методом [37, 38]. Глубина слоя в зависимости от условий работы детали 5—30 мк. На вольфрамовые нити и другие детали рениевое покрытие наносят путем термического разложения карбонила рения [7] или его галоидных соединений 15]. В работе [15] рениевые покрытия наносились на тугоплавкие металлы методом термической диссоциации хлористых соединений рения КеСЬ и КеОСЦ при атмосферном давлении (лучшие покрытия при использовании КеОСЬ). Покрытия получены плотные с хорошим сцеплением с основой. [c.208]

    Обработка серной кислотой описана применительно к коппито-вому концентрату [15, 16]. Исходный материал, содержащий 0,2— 0,5% НЬгОб, вначале обрабатывали азотной кислотой для удаления кальция. Остаток с содержанием около 6% ЫЬзОб обогащали магнитной сепарацией и гравитационно разделяли на столах. При этом получали 16—17%-ный (по ЫЬаОб) концентрат. Его обрабатывали 75%-ной серной кислотой при 180° С4 ч. Ниобий, титан, редкоземельные элементы, железо и другие примеси переходили в раствор. Разложение производили в покрытых кислотоупорной эмалью реакторах. Начальное отношение Т Ж = 1 4. [c.513]

    Время выдержки изделий в расплавах зависит от формы, массы изделий, их назначения и колеблется от нескольких секунд до нескольких минут. При более длительном пребывании изделий в расплавленных металлах могут образоваться толстослойные диффузионные покрытия. Так, диффузионное алюминиевое покрытие толщиной до 0,2—0,3 мм образуется на железе при 750 °С в течение 30—45 мин [46], на титане при 840 °С за 60—90 мин [106]. Вместе с тем возможно охрупчивание покрытия, как это происходит с оловом на железе вследствие образования соединений FeSn, РеЗпг. [c.83]

    В последние годы в эмалировочной промышленности США и некоторых западноевропейских стран нашла применение малоуглеродистая титансодержащая сталь. Особенностью легирования стали титаном является образование устойчивых его соединений с кислородом, азотом и углеродом [150—153], получившее наименование стабилизации . Небольшие добавки титана после раскисления стали марганцем и кремнием оказываются полезными, так как они способствуют понижению температуры плавления образующихся силикатов марганца и железа, всплыванию их на поверхность расплавленной ванны и тем самым — уменьшению содержания в стали неметаллических включений. Титан служит весьма эффективной добавкой для связывания или стабилизации азота, устраняющей явление деформационного старения стали. Самая важная для эмалирования сторона воздействия титана на структуру стали заключается в стабилизации углерода в виде карбида ТЮ. Связанный в прочный карбид титана углерод окисляется значительно медленнее, чем углерод, связанный с железом. Соответственно уменьшается количество газообразных продуктов окисления углерода, выделяющихся при обжиге эмалевого покрытия и нарушающих его сплошность -н- гцр.плр.ние с метяллом. Увеличивая стойкость стали против [c.109]

    Сульфосалициловая кислота (Ssal), относящаяся к классу оксикислот, хорошо растворима в воде, спирте, эфире, образует комплексные соединения с железом, алюминием, серебром, титаном и некоторыми другими металлами. Электроосаждение серебра из кислых растворов не дает положительных результатов. Даже при pH 7—8 покрытия получаются рыхлые, темные. Качество их существенно улучшается при переходе к щелочным растворам, содержащим добавку аммиака. При pH 8,5—9,0 формируются светлые, мелкокристаллические осадки. Исследования показывают л 99 [c.99]

    Раствор нагревают до кипения, причем при значительных количествах титана и циркония происходит гидролиз, титан и цирконий частично выпадают в виде быстро коагулирующего осадка. Когда раствор нагрет до кипения или до 80—90°, стакан снимают с горелки и при тщательном помешиваний в присутствии индикатора метилрот производят осаждение, циркония, титана, железа, алюминия и хрома прибавлением по каплям 20%-цого раствора пиридина до перехода окраски индикатора в желтую. Если трудно наблюдать за окраской из-за большого осадка, то ориентируются, прибавляя пиридин до появления запаха, затем прибавляют еще 10—15 мл раствора пиридина, дают раствору вскипеть и переносят стакан на водяную баню или на электрическую плитку, покрытую асбестом, до полной коагуляции осадка. [c.41]

    Раствор нагревают до кипения, причем при значительных количествах титана и циркония происходит гидролиз, и титан и цирконий частично выпадают в виде быстро коагулирующего осадка. Когда раствор нагрет до кипения или до 80—90°, стакан снимают с горелки и при тщательном домешивании в присутствии индикатора метилового красного осаждают уран, цирконий, титан, железо, алюминий и хром прибавлением по каплям 20%-ного раствора пиридина до перехода окраски индикатора в желтую. Если трудно наблюдать за окраской из-за большого осадка, то ориентируются, прибавляя пиридин до ясного запаха далее прибавляют еще 10—15 мл 20%-ного раствора пиридина, дают раствору вскипеть, затем переносят стакан на водяную баню или на электрическую плитку, покрытую асбестом, до полной коагуляции осадка. Необходимо следить за тем, чтобы раствор (по отстаивании осадка) был окрашен индикатором в желтый цвет. В противном случае прибавляют еще раствор пиридина. [c.39]


Смотреть страницы где упоминается термин Титан покрытие на железе: [c.136]    [c.85]    [c.85]    [c.75]    [c.109]    [c.137]    [c.594]    [c.566]    [c.321]    [c.25]    [c.17]    [c.181]    [c.182]    [c.146]    [c.145]    [c.492]   
Руководство по неорганическому синтезу (1953) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Покрытия железу



© 2025 chem21.info Реклама на сайте