Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индикаторы для титрования в неводных среда

    Методы количественного определения препаратов фенотиазинового ряда разнообразны и базируются на свойствах соединений. Фармакопейным методом является метод кислотно-основного титрования в неводных средах. Препарат растворяют в ледяной уксусной кислоте ли ацетоне, добавляют ацетат окисной ртути и титруют хлорной кислотой по индикатору кристаллический фиолетовый или метиловый оранжевый. [c.322]


    Для определения количественного содержания атропина сульфат ГФ X рекомендует метод кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит ледяная уксусная кислота. Навеска препарата титруется хлорной кислотой по индикатору кристаллический фиолетовый до зеленого окрашивания раствора. [c.339]

    Для количественного определения препарата ГФ X рекомендует метод кислотно-основного титрования в неводных средах Амидопирин, как слабое основание, титруется хлорной кислотой в присутствии протогенного растворителя —ледяной уксусной кислоты, оо индикатору тропеолин 00 в метиловом спирте до получения ярко-фиолетового окрашивания (Н — остаток молекулы амидопирина). [c.307]

    Количественно препарат определяется методом неводного титрования в среде ледяной уксусной кислоты, титрант — хлорная кислота, индикатор — кристаллический фиолетовый. [c.316]

    Титранты, растворители и индикаторы для титрования в неводной среде [c.259]

    Количественное содержание нитроксолина в препарате определяется методом кислотно-основного титрования в неводных средах. Препарат растворяют в муравьиной кислоте и титруют 0,1 н раствором хлорной кислоты до желтого окрашивания при индикаторе малахитовый зеленый (0,5% раствор в ледяной уксусной кислоте). В конце титрования прибавляют 5 капель индикатора Расчет ведут на сухое вещество. Для количественного определения нитроксолина в препарате можно применить нитритометрический метод после восстановления китрогруппы в аминогруппу. [c.320]

    Оттитровать в неводной среде соли галогеноводородных кислот органических оснований можно и без помощи ацетата ртути (II). Для этого в качестве растворителя используют смесь муравьиной кислоты и уксусного ангидрида в соотношении 1 20. Такое сочетание растворителей повышает основность растворов и позволяет выполнить титрование с использованием в качестве титранта хлорной кислоты (индикатор — кристаллический фиолетовый), например, эфедрина гидрохлорида и дефедрина. В других случаях к указанной смеси прибавляют бензол, например, при определении этмозина и этацизина и др. Не требуется добавления ацетата ртути и при определении некоторых солей органических оснований (например, аминазина) с использованием в качестве индикатора малахитового зеленого (растворитель уксусный ангидрид, титрант — 0,1 М раствор хлорной кислоты). [c.142]


    Методы кислотно-основного титрования характеризуются высокой точностью погрешность рядовых определений составляет 0,1...0,2%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных рН-индикаторов и разработаны различные физико-химические методы потенциометрические, кондуктометрические, термометрические и др. Область практического применения методов кислотно-основного титрования весьма обширна. Интенсивно развиваются методы кислотно-основного титрования в неводных средах. [c.219]

    Продукты реакции анализировали качественно методом хроматографии на бумаге и количественно определением содержания азота по Кьельдалю и титрованием продуктов в неводной среде. Углеводородную часть продуктов реакции анализировали методом адсорбции с флуоресцентными индикаторами. Применявшиеся методы анализа продуктов реакции подробно описаны в приложении. [c.125]

    Количественное содержание препарата определяется методом кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит диметилформамид, нейтрализованный по тимоловому синему. Титрантом является 0,1 н. раствор гидроксида иатрия в смеси метилового спирта к бензола. Титрование ведется до появления синего окрашивания (индикатор метиловый синий). [c.257]

    Хлорная кислота при неводном титровании. Многие слабоосновные или слабокпслотные органические соединения нельзя титровать в водной среде из-за того, что они не дают достаточно четких конечных точек в воде (в водно-спиртовой смеси) илн плохо растворяются. Указанные трудности можно преодолеть при проведении титрования в безводной среде. В связи с этим особую роль приобретает титрование раствором хлорной кислоты. Большей частью титрование веду г в ледяной уксусной кислоте, но можно, применять и другие неводные среды. Для определения конечной точки пользуются индикаторами, методами потенциометрии и высокочастотной кондуктометрии. [c.125]

    Для применения индикатора при титровании в неводных средах готовят 0,5% раствор его в ледяной уксусной кислоте. [c.137]

    Действие индикаторов, использующихся при титровании в неводной среде, основывается на тех же принципах, что и для водных растворов. Так, индикатор Hin, являющийся слабой кислотой, взаимодействует с растворителем SH [c.260]

    Для некоторых классов полимеров характерно наличие групп, проявляющих кислые (или основные) свойства. В этих случаях для количественного определения функциональных групп могут быть применены методы кислотно-основного титрования с индикацией точки нейтрализации любым из принятых при кислотно-основном титровании методов (индикатор, потенциометрия, кондуктометрия, колориметрия и т. д.). При этом особое значение имеет титрование с применением неводных сред (в том числе спиртов, уксусной или муравьиной кислоты, пиридина, диметилформамида). [c.100]

    В методах фотометрического титрования ЗОГ солями бария в качестве индикаторов применяются /торон [789, 1103, 1337], нитхромазо [48,127, 335, 423], ортаниловый Б [404], ортаниловый К [404, 544], сульфоназо III [456, 544], антраниловый К [544]. Титруют 804 в неводной среде до перегиба на кривой титрования- [c.131]

    Хан [1006], обсуждая преимущества обратного титрования, отмечает целесообразность его применения для устранения ошибок, имеющих место при прямом титровании кальция и магния раствором комплексона III по эриохром черному Т из-за недостаточно резкого перехода окраски и каталитического разложения индикатора в присутствии следов некоторых элементов, в частности Си и Мп. Обратное титрование рекомендуется при определении кальция и магния в присутствии фосфат-ионов 1046], в неводных средах [1014, 1192] и смазочных маслах [953]. [c.40]

    Титрование кислот более слабых, чем уксусная. При титровании разбавленных растворов кислот более слабых, чем уксусная, скачок титрования еще меньше. Определение точки эквивалентности при титровании таких кислот с помощью индикаторов весьма затруднительно и во многих случаях просто невозможно. Для количественного определения очень слабых кислот прибегают к специальным методам титрования и используют для этой цели неводные среды. Для вычисления pH раствора вблизи точки эквивалентности при титровании очень слабых кислот пользуются более сложными уравнениями. [c.87]

    Во многих случаях конечную точку титрования можно визуально обнаружить при использовании в качестве индикаторов органических красителей. Однако выбрать подходящий индикатор для титрования в неводной среде сравнительно трудно, поэтому наиболее перспективные с практической точки зрения методики основаны на потенциометрическом обнаружении точки эквивалентности (гл. 13). [c.332]


    Для титрования в неводных средах (см. стр. 49) в качестве растворителя пригодна уксусная кислота. Вследствие своего амфипротного характера (константа аутопрсто-лиза р/С 14,4 DK = 6,13) она особенно пригодна для титрования таких слабых оснований, при титровании которых в воде не получаются удовлетворительные кривые титрования. В безводной уксусной кислоте возможна визуальная индикация конечной точки титрования с окрашенными индикаторами, однако выбор их может быть осуществлен только эмпирически. [c.79]

    Метод потенциометрического титрования оказывается особенно полезным при изучении интенсивно окрашенных систем, которые нельзя анализировать при помош,и обычных визуальных индикаторов, а также при титровании в неводных средах. Метод является эффективным средством изучения систем, в которых наблюдается заметное взаимодействие продуктов реакции с растворителем, и систем, для которых не удается подобрать внутренний индикатор. При помощи потенциометрического титрования удается также оценить пригодность того или иного визуального индикатора для разрабатываемых методик анализа. [c.420]

    Кислотные и основные группы. Для нек-рых классов полимеров характерно наличие группировок, проявляющих кислые (поликарбоновые к ты полимеры, содержащие фенольные группы) или основные (полиамины, полиамиды, четвертичные полимерные основания и т. д.) свойства. В этих случаях для количественного определения функциональных групп м. б. применены методы кислотного или основного титрования с индикацией точки нейтрализации любым из принятых при кислотно-основном титровании методов (индикатор, потенциометрия, кондуктометрия, колориметрия и т. д.). При этом особое значение имеет титрование с применением неводных сред (в том числе спиртов, уксусной или муравьиной к-т, пиридина, диметилформамида). [c.65]

    При титровании разбавленных слабых кислот (оснований) в водных и неводных средах не удается четко определить точку эквивалентности. Для повышения точности фотометрического титрования таких систем были предложены специальные графические методы [282—288]. Относительные ошибки титрования в случае применения окрашенных индикаторов вычисляются значительно сложнее [251]. [c.196]

    Успешно развивается применение электрохимических индикаторов для определения конечной точки титрования (Fe +, u +) [23, 33—35], что дает возможность определять элементы, которые не анализируются полярографически, и исключить влияние многих металлов с низкой полуволной например Индикатор должен иметь более положительный потенциал восстановления, при котором ни титруемое вещество, ни реагент не дают полярографических волн. На титрование индикатора расходуется некоторое количество фтор-иона, поэтому приходится вводить поправку, величина которой определяется путем титрования индикатора с определяемым элементом [36]. Развивается амперометрическое титрование в неводных средах и с применением двух индикаторных электродов [25]. [c.137]

    Органические реактивы находят широкое применение в титри-метрии. В кислотно-основном титровании органические вешества, обладающие соответствующими свойствами, применяются главным образом в качестве окрашенных или флуоресцирующих индикаторов изменения pH (сульфофталеины, азосоединения, нитрофенолы и т. д.), либо как стандарты (щавелевая кислота, кислый фталат калия), либо в качестве титрантов, пригодных для неводных сред (гидроокиси тетраалкиламмония). [c.286]

    Анализ алкоголятов проводили путем титрования уксусной кислотой. Как уже упоминалось, алкоголяты реагируют с метил-формиатом и водой, поэтому определение алкоголятов в реакционном продукте вели в неводной среде (смесь бутанола и метанола в соотношении 4 1) индикатором служил тимоловый синий [20]. Предварительно было установлено, что компоненты анализируемых смесей — формиат натрия и метилформиат — не искажают результатов анализа. Поскольку щелочь мешает анализу, при получении алкоголятов из гидроокиси натрия степень протекания реакции определяли по количеству воды, отогнавшейся из смеси. [c.157]

    Обычно улучшение условий титрования в неводных растворителях так велико, что титрование в описанных выше случаях может быть проведено не только потенциометри-чески, но и с индикаторами. Титрование с индикаторами в неводных растворах ограничивается недостаточностью данных о константах диссоциации и интервалах перехода индикаторов. Ниже приводим основные данные о свойствах индикаторов в неводных средах. [c.460]

    Обычно индикаторы выбираются для данного конкретного случая кислотно-основного титрования экспериментально. Получают кривые потенциометрического титрования и отмечают переходы окраски ряда индикаторов, чтобы определить, какой из переходов совпадает с конечной точкой нотенциометрического титрования. В воде, если известно pH в точке эквивалентности, выбор правильного индикатора не вызывает затруднений, так как pH переходов окраски различных индикаторов известен. На рис. 10 показаны полезные области pH в воде для некоторых индикаторов этот рисунок можно использовать как руководство при выборе индикатора в соответствии с конечной точкой потенциометрического титрования для кислотно-основных титрований. Приведенные индикаторы были выбраны на основании четких, просто определяемых изменений их окраски. Перечисленные индикаторы, у которых изменение окраски происходит при малых значениях pH, мало приемлемы для водных растворов, так как конечные точки потенциометрического титрования в этой области определяются обычно не очень хорошо. Однако эти индикаторы рекомендуется использовать в неводных растворителях. О шкале индикаторов в неводных средах имеется очень мало сведений. Обычно для этих сред индикаторы выбирают экспериментально, беря за основу их поведение в воде. Индикаторы, перечисленные на рис. 10, хорошо функционируют в дифференцирующих растворителях и обычно сохраняют в них свои сравнительные точки перехода. Если при оценке индикатора для конкретного случая применения в неводной среде область изменения окраски индикатора оказывается слишком кислой, тогда для следующей пробы следует выбрать индикатор, стоящий в шкале предыдущим. [c.32]

    Прямое протолигометрическое титрование возможно, если удовлетворены требования, рассмотренные в разделе 12.5. В водных растворах протолитические реакции обычно протекают стехиометрично и практически мгновенно. Индикаторов pH в настоящее время известно много, поэтому при их выборе, как правило, затруднений тоже нет. Однако осложнения часто возникают вследствие не-специфичности взаимодействия, а также недостаточно высокого значения константы равновесия. В таких случаях может оказаться целесообразным вместо воды применять другой растворитель, т. е. перейти к неводному титрованию. Следовательно, титрование в неводных средах применяют главным образом, когда  [c.191]

    Особая группа — К.-о. и., применяемые для установления конечной точки титрования в неводных средах. Напр., при титровании слабых орг. оснований в среде ледяной СНзСООН примен. тимоловый синий, при титровании слабых карбоновых к-т в ДМФА — о-нитроанилин. Для определения орг. к-т и оснований в смеси воды и несмешивающе-гося с ней р-рителя примен. т. н. амфи-индикаторы, к-рые представляют собой соли к-т, служащих К.-о. и. (напр., тропеолин ОО, ализарин С, метиловый оранжевый, бромфеноловый синий), с различными орг. основаниями (алкалоидами, спартеином, атропином, эфедрином, хинином, кодеином, пилокарпипом и др.). Эти индикаторы хорошо раств. в орг. р-рителях, плохо — в воде отличаются высокой чувствительностью. л. Н. Симонова. [c.257]

    Кислотно-основные флуоресцентные индикаторы (табл. 1) используют для определения pH р-ров и в кислотно-основном титровании. Индикаторы, изменяющие флуоресценцию при низких значениях pH, применяют для титроваш слабых оснований сильными к-тами, при высоких значениях рН-слабых к-т сильными основаниями, при pH 3-10-сильных к-т сильными основаниями, индикаторы, изменяющие флуоресценцию при двух разл. значениях pH,-для титрования многоосновных кислот. Флуоресцентные индикаторы м. б использованы в р-циях нейтрализации, проводимых в неводной среде, напр, нафтиламиносульфамиды для титрования хлорной к-ты в безводной СН3СООН. [c.612]

    Для фиксирования ТЭ применяют визуальные методы (табл. 9.8), но главным образо11 отенциомегрическое титрование. Интервалы перехода окраски цветньк индикаторов сильно изменяются в неводных средах (табл. 9.9), и хотя в принципе многие индикаторы можно применять дпя обнаружения ТЭ, предпочитают потенциометрический метод со стеклянным (или сурьмяным) электродом, теория которого хорошо разработана. [c.59]

    Т. возникла в сер. 18 в. Многие ученые внесли вклад в ее развитие. Так, У. Льюис (1767) дал определеме понятия точки насьнцения , т.е. точки эквивалентности. Благодаря работам Ж. Гей-Люссака Т. превратилась из метода пром. анализа в самостоят. раздел науки. Э. Мор разработал много методик по титриметрич. анализу,, написал Учебник по химико-аналитическому методу титрования (1856) В. Оствальд и А. Ганч развили теорию индикаторов (1894) Д. Форлендер впервые провел титрование в неводных средах (1904). [c.599]

    Обнаружение конечной точки титрования. Обычно титрование в неводной среде проводят со стеклянным индикаторным электродом, удовлетворительно реагирующим на изменения активности водородных ионов в различных растворителях (см. разд. 4-10). Разработаны визуальные индикаторы, которые часто выбирают эмпирически. Кристаллический фиолетовый и метиловый фиолетовый издавна применяют для определения оснований в ледяной уксусной кислоте. Фритц и Гейнер [60[ приводят перечень индикаторов для титрования кислот гидроксидом тетрабутиламмония в пиридине. Кольтгоф, Чантуни и Боуми [61] изучали индикаторы с рК диссоциации в ацетонитриле в интервале от 2 до 30. Для спиртов и водноспиртовых смесей можно применять обычные индикаторы, применяемые для водных растворов, если известен их сдвинутый интервал pH (см. разд. 4-9). Хигучи, Фельдман и Рем [62] изучали поведение 13 индикаторов в ледяной уксусной кислоте. В табл. 6-2 представлены значения рК некоторых индикаторов в различных растворителях [61, 63, 64]. [c.135]

    При прямых титрованиях раствором РЬ(СНзС00)4 как в водной, так и в неводной среде точку эквивалентности находят потенциометрическим методом. При титровании бензилмеркаптана в ледяной уксусной кислоте применяют ред-окс-индикатор — хинализарин [12], а при титровании аскорбиновой кислоты — N,N -би -[4-(4 -метоксифениламин)-фенил ]-тиомочевину [25 ]. [c.130]

    Титрование в неводных растворах. Согласно теории Бронстеда, слабая кислота ведет себя как более сильная при растворении ее в жидком аммиаке или пиридине, которые имеют более сильную по сравнению с водой тенденцию к принятию прогона. Подобным же образом слабое основание кажется сильнее при растворении его в таком растворителе, как ледяная уксусная кислота. По этой причине, а также по причине плохой растворимости в воде многих слабых кислот и оснований желательно проводить титрование в различных неводных средах. Иногда это можно выполнить с помощью органических индикаторов, однако часто необходимо проведение потенциометрического титрования [15]. [c.156]

    Наряду с индикаторами при титровании в неводной среде очень часто применяют электрохимические методы определения точки эк Бивалентности — потенциометрические, амперометрические и др [c.260]

    Потенциометричес кое титрование слабых протолитов (оснований или кислот) особенно удобно тогда, когда они являются очень слабыми и применение индикаторов, меняющих цвет в интервале 2 единиц pH, приводит к значительным ошибкам. Очень подха-дящим является этот метод и для титрования смеси слабых протолитов, например кислот. Однако и в этом случае для получения достаточно точных результатов необходимо, чтобы, как и при титровании многоосновных кислот (см. гл. X), значения /Са. для отдельных кислот различались по меньшей мере на 4 порядка. На кривой титрования П9являются два участка эквивалентности первый — для более сильной кислоты, а второй — для кислоты с меньшим значением /Са. Для смеси кислот. Ка которых различаются менее, чем на 4 порядка, очень хорошие результаты можно получить прй проведении титрования в неводной среде. [c.335]

    Основные научные работы относятся к аналитической и физической химии. Разработал колориметрический метод определения водородного показателя с использованием кислотно-основных индикаторов, Указал на важность контроля этого показателя в промышленности, бактериологии и аналитической химии. Изучал процессы образования и кристаллизации осадков с помощью радиоактивных изотопов. Одним из первых в США выполнил фундаментальные исспе-дования в области полярографического анализа. Изучал кинетику и механизм эмульсионной полимеризации, разработал низкотемпературный способ производства синтетического каучука. После 1955 сконцентрировал свое рнимание на изучении кислотно-основного равновесия и разработке методов титрования в неводных средах Автор переведенных на многие языки книг, в частности таких, как Кон-дуктометрическое титрование (1923. русский перевод 1935), Потенциометрическое титрование (1927), Объемный анализ (т. 1 — 2, 1929, русский перевод 1930, 1932), Учебник количественного неорганического анализа (1936), [c.249]

    Метод титрований в неводных средах часто называют методом Бенези или Тамеле. Он основан на анализе Уоллинга [56] — анализе взаимодействия адсорбционного кислотно-основного индикатора с кислотными центрами поверхности. [c.367]

    Алицино [2] предложил определять тиомочевину титрованием хлорной кислотой в присутствии ацетата ртути в неводной среде с индикатором кристаллическим фиолетовым, [c.252]


Библиография для Индикаторы для титрования в неводных среда: [c.230]   
Смотреть страницы где упоминается термин Индикаторы для титрования в неводных среда: [c.14]    [c.257]    [c.35]    [c.2]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Титранты, растворители и индикаторы для титрования в неводной среде

Титрование неводное

неводных средах



© 2025 chem21.info Реклама на сайте