Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа обнаружение нитрат-ионов

    Реакции С сульфатом железа (II) в кислой среде и с дифениламином являются общими для ионов НОд" и КОа". Несколько реакций используют для обнаружения нитрит-иона в присутствии нитрата. [c.218]

    Нитрат-ионы с этим реактивом не дают окрашивания. Сильные окислители разрушают реактив, поэтому мешают выполнению реакции. В присутствии в анализируемом растворе ионов трехвалентного железа, мешающих реакции, необходимо перед обнаружением нитрит-ионов прибавить к раствору немного винной кислоты или фторида натрия для связывания в комплекс ионов железа. [c.153]


    Для обнаружения нитратов в черном ружейном порохе, содержащем много нитратов, достаточно капли его водного экстракта. Для этого можно использовать цветную реакцию с дифениламином или дифенилбензидином, в результате которой образуются хиноидные продукты окисления синего цвета. В других взрывчатых веществах можно открыть хлорат, пользуясь реакцией с сульфатом марганца и фосфорной кислотой, при которой образуется красный комплексный фосфат трехвалентного марганца. Азиды обнаруживают по образованию красного азида железа (П1) или по реакции азотистоводородной кислоты с азотистой кислотой, которые после этого нельзя открыть реагентом Грисса. В остатке после сгорания черного пороха всегда содержатся тиосульфат, тиоцианат и сульфид, наряду с некоторым количеством элементарной серы. По каталитическому ускорению иод-азидной реакции можно обнаружить даже следы этих соединений. Для обнаружения аммониевых солей—нитрата аммония и других—можно использовать реагент Несслера или другие реагенты на ион аммония. [c.691]

    Обнаружение нитрат-ионов ЫОз- Если в анализируемом растворе питрит-иопов N02 нет, то нитрат-ионы N03 обнаруживают реакцией с антипирином (стр. 151). При отсутствии в анализируемом растворе анионов N02, Вг и Л нитрат-ионы можно обнаружить реакцией с сульфатом двухвалентного железа и концентрированной серной кислотой (стр. 150, п. 1). [c.159]

    Вольфрам 304 обнаружение 311, 312 Восстановители алюминий 287, 291, 344 железо 291 магний 287, 291 олово 290, 291, 292, 293, 399 станниты натрия или калия 265 сульфит натрия 201, 320 хлорид олова 258, 259, 287 цинк 287, 291, 292, 306, 308, 344 этиловый спирт 201 Восстановление 183, 184, 230 железа 293 ванадия(У) 308 висмута 265, 293 вольфрама 311 молибдена 309 мышьяка 286, 287 нитрат-иона 344 олова 294 [c.416]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]


    Методика основана на минерализации полимера в концентрированной серной кислоте с пероксидом водорода и последующей реакции ионов сурьмы(III) с иодидом калия в присутствии аскорбиновой кислоты. Окрашенный раствор йодного комплекса сурьмы(III) фотометрируют при 400 нм (ФЭК-56М, светофильтр № 3) в кюветах с толщиной слоя 20 мм относительно контрольного раствора. Предел обнаружения при максимально возможных навесках до 0,2 г составляет 0,005% сурьмы в полимере. Определению не мешают железо, медь, фосфаты, нитраты. [c.72]

    Обнаружение роданид- и сульфид-ионов. В колонку, содержащую окись алюминия в анионной форме (см. стр. 16), вносят одну-три капли раствора смеси роданида и сульфида 0,1 н. концентрации по отношению к каждому иону, одну каплю воды и три капли нитрата железа (П1). Вверху образуется темно-красная зона, переходящая в оранжевую (роданид), внизу—черная зона (сульфид). [c.54]

    Чувствительность реакции повышается при стоянии раствора с осадком, а также в присутствии хлорида аммония. Этой реакцией галлий может быть обнаружен в присутствии больших количеств алюминия и цинка при добавлении к исследуемому раствору соответственно этиламина и пиридина. Мешают реакции РЬ, Си, 8п, 5Ь, 1п, Р1, Се, V, Мо и большие количества железа. Нитрат- и ацетат-ионы огмедляют образование соединения. [c.30]

    Верните фильтры с осадками в стаканы, в которых проводили осаждение. Добавьте в каждый примерно 5 мл концентрированной соляной кислоты и измельчите бумагу, помешивая стеклянной палочкой. Разбавьте до ЗОО мл дистиллированной водой и пере-осадите гидратированный оксид железа(III), как указано выше. Снова декантируйте раствор через беззольный бумажный фильтр и повторно промойте осадок гО рячим 1%-ным раствором нитрата аммония. Если в фильтрате хлорид-ион не обнаружен или он присутствует в очень небольших количествах (п)римечание 4), количественно перенесите осадок в конус фильтра. Соберите последние следы осадка, прилипшие к стенкам стакана, маленьким кусочком беззольного фильтра. Если возможно, оставьте осадок сохнуть в течение ночи. Затем перенесите фильтр с осадком (стр. 320) в фарфоровый тигель, предварительно прокаленный до постоянной массы. Обуглите бумагу при низкой температуре, стараясь обеспечить свободный доступ воздуха (примечание 5). Постепенно повышайте температуру, пока весь углерод не выгорит. Затем прокалите тигель до постоянной массы при 900—1000 °С. [c.344]

    Набор ионов, которые можно детектировать электрохимически, включает цианид, сульфид, гипохлорит, анион аскорбиновой кислоты, арсенит, бромид, иодид, тиосульфат, гидразин, фенолы и ароматические амины [18], нитрит и нитрат [19, 20], кобальт и железо [21] и др. С учетом способа получения производных после разделения этот перечень можно расширить, включив в него карбоновые кислоты, а также ионы галоидов, щелочных и некоторых переходных металлов [22, 23]. Уравнение (3-8) дает пример электрохимической реакции для обнаружения ионов  [c.54]

    Реакция с сульфатом железа (И). В отличие от условий проведения аналогичной реакции (см. предыдущий параграф с NOr ионами) кислотность раствора при обнаружении NOi-hohob должна соответствовать кислотности разбавленного раствора уксусной кислоты (рн = 3—4). Остальные условия проведения реакции те же, что и при обнаружении МОз-ионов- Реакция применима для обнаружения нитрит-ионов в присутствии нитрат-ионов, если проводить ее в слабокислой среде. [c.324]

    Описанные выше реакции обнаружения NH - Fe +- Fe+ + +-ионов при помощи реактивов NaOH, Кз1Ре(СЫе)], K4[Fe( N)8] и открытие ртути при нагревании нитрата ртути с карбонатом натрия являются соответственно качественными реакциями на ионы аммония, двух- и трехвалентного железа и на ртуть. [c.164]

    Pb ", Мо Сг V , Ti ", Г, S N, NO2, ЗаОз иВг. а также ор-ганическне соединения. Влияние поглощения органических веществ можно учесть, измеряя поглощение растворов при 275 нм. Если к раствору, содержащему нитраты и хлориды, добавить H2SO4, то максимум поглощения сдвигается до 230 нм. В этой области мешающее влияние посторонних ионов выражено слабее. Применение сернокислых растворов предложено в работе [67]. Метод использован для анализа воды [68] и других объектов [69]. Измерение поглощения в УФ-области позволяет определять нитрит и нитрат при совместном присутствии [70], поскольку оба иона поглощают в области 302 нм, а нитрит — в области 355 нм. При использовании кюветы с толщиной слоя 1 см предел обнаружения нитрита равен 0,02 мг/мл, а нитрата 0,09 мг/мл. Определению мешает ряд ионов [70]. Описан косвенный метод определения нитратов, основанный на их восстановлении титаном (III) до аммиака и измерении поглощения аммиака в газовой фазе при 201 нм. Ионы кобальта, меди, железа и цинка подавляют сигнал, хотя не мешают определению аммония в аналогичном методе. Предполагается, что этот эффект связан с частичным окислением титана(III) или образованием неустойчивых промежуточных комплексов этих ионов, которые разлагаются с выделением не аммиака, а других соединений азота. [c.128]


    Раствор, содержащий 5% хлорамина, может быть применен вместо хлорной воды [220] для открытия ионов брома и иода, для замены белильной извести в индофенольной реакции, вместо перекиси водорода при обнаружении кофеина, и в качестве окисляющего агента при определении индикана в моче. В количественном анализе он дает удовлетворительные результаты [221] при потенциометрическом определении трехвалентного висмута и мышьяка, двухвалентного олова и железа, ионов ферроцианида, сульфита, нитрата и иода, гидрохинона, хингидрона и солянокислого гидразина. Титр раствора хлорамина Т заметно не изменяется при стоянии раствора в течение 3 месяцев и может быть установлен но трех-окисн мышьяка. Титрование проводят в кислом растворе. Прн этом тиоцианат-ион [222] окисляется количественно в цианат-н сульфат-ионы, гппофосфит-ион —в фосфит-ион (при 24-часовом стоянии) и азотистая кислота—в азотную [223]. Особенно большое значение хлорамин Т имеет как заменитель иода при анализе сульфита [224] в контроле сульфитнобумажного производства. Этим методом можно также определять концентрацию гидросульфита натрия [225а]. Так как ион иода легко окисляется в свободных иод подкисленным раствором хлорамина Т, последний может быть применен для любого иодометрического титрования нри предварительном прибавлении к раствору небольшого количества иодистого калия и крахмала [2216, 222, 2256]. [c.41]

    Способностью цинка и железа давать комплексные соединения пользуются для отделения Zn + от других ионов, а также для обнаружения Ре + и Ре +. Сульфаты, нитраты, хлориды и некоторые другие соли катионов 3-й группы растворимы в воде. Гидроокиси, фосфаты, сульфиды и ряд других солей этих ионов мало растворимы в воде. Гидроокиси катионов 3-й группы являются весьма слабыми основаниями, а потому водные растворы их солей, образованных сильными кислотами, обладают в результате гидролиза кислой реакцией. Соли же алюминия и слабых кислот, наЪример AI2S3 и Л12(СОз)з, полностью гидролизуются в водной среде с образованием А1 0Н)з. [c.116]

    Значительно надежнее и проще в выполнении метод становится при экстракции роданистого комплекса железа (П1) в виде ионного ассоциата с бензилтрифенилфосфонием (БФФ), тетрафенилфосфонием (ТФФ) или тетрафениларсонием (ТФА) в дихлорэтан. В этом варианте концентрация ионов водорода в водной фазе остается той же, а концентрация роданида может быть снижена до 0,5 М, концентрация соли катиона в органической фазе равна 0,02 М. В качестве экстрагента может быть применен дихлорэтан или другой растворитель с высокой диэлектрической проницаемостью. Молярный коэффициент поглощения метода около 2,8-10 , предел обнаружения (1—5) X ХЮ % (масс.). Метод применяли для определения железа в особо чистых нитратах, карбонатах, оксидах и гидроксидах щелочных, щелочноземельных металлов, алюминия и многих других объектах. Ошибка определения не превышала 10%. Параметры метода приведены в табл. 3.6 и 3.7. [c.99]

    Тиоцианат серебра AgS N образуется в виде белого нерастворимого осадка при взаимодействии раствора, содержащего ионы серебра, с растворимым тиоцианатом. На этой реакции основан объемный метод определения серебра (по Фольгарду). В качестве индикатора при этом титровании используется нитрат железа(1П). Как только заканчивается осаждение тиоцианата серебра, небольшой избыток тиоцианат-ионов образует тиоцианат железа ) Fe(S N)3, окрашенный в ярко-красный цвет и растворимый в воде. Эта цветная реакция применяется также для качественного обнаружения ионов железа(И1). Тиоцианат ртути ) Hg(S N)2 представляет собой нерастворимый осадок, образующийся при осаждении соли ртути тиоцианатом щелочного металла горит, когда его поджигают, оставляя объемистый остаток, состоящий из углерода, азота и серы (фараоновы змеи). [c.501]


Смотреть страницы где упоминается термин Железа обнаружение нитрат-ионов: [c.124]    [c.26]    [c.186]   
Основы аналитической химии Издание 2 (1965) -- [ c.388 ]




ПОИСК





Смотрите так же термины и статьи:

Железо, ионы

Нитрат-ион обнаружение

Нитрат-ионы

Нитрат-ионы ионами

Нитрат-ионы обнаружение



© 2025 chem21.info Реклама на сайте