Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород карбоновых кислот и их солей

    Этилен реагирует с солями насыщенных карбоновых кислот, содержащих, по крайней мере, один атом водорода при -углеродном атоме [30]. Этилирование, катализируемое щелочными металлами и их производными, протекает под давлением этилена при 150—250 °С и может быть представлено реакцией  [c.173]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    К методам получения катализаторов сухим путем относится получение окислов металлов обжигом нитратов или солей органических карбоновых кислот при 300—400°. Так, например, нитрат никеля или кобальта превращают в мелкодисперсные N10 или СоО, которые затем восстанавливают водородом до металла. Аналогично из нитратов можно получать СиО, РезОд, МпО, 2пО и другие окиси. Вместо нитратов можно брать некоторые карбонаты и соли органических карбоновых кислот. Обжигом смеси нитратов в рассчитанных соотношениях можно получать и смешанные катализаторы. [c.50]

    Большой поверхностной активностью (адсорбционной способностью) обладают карбоновые кислоты и их соли. Объясняется это их дифильностью — одновременным сродством к растворителям полярного и неполярного типов. Наличие в молекулах ионов водорода или металла сообщает им сродство к полярной среде (вода, спирты и т. п.), а наличие развитого углеводородного радикала сообщает сродство к неполярной среде (углеводороды, воздух и т, п,), В связи с этим молекулы карбоновых кислот и их солей скапливаются на поверхности раздела фаз, ориентируясь полярной частью к полярной среде, а неполярной — к неполярной (рис, П.27). [c.122]


    В промышленности изобутилен извлекается в основном из фракций углеводородов С4 газов нефтепереработки и пиролиза. Существуют различные методы извлечения изобутилена из углеводородных смесей с помощью серной кислоты, хлористого водорода, водных растворов хлоридов металлов и соляной кислоты, фенолов и крезолов, карбоновых кислот, сероводорода, медных солей, катионитов [58, с. 561. В настоящее время в промышленности для выделения чистого изобутилена используются в основном два метода хемосорбция водными растворами серной кислоты и с помощью катионитов. В нашей стране реализованы оба эти метода. [c.219]

    Характерными, реакциями кислот являются замещение атома водорода карбоксильной группы катионом (образование солей карбоновых кислот) и этерификация при взаимодействии со спиртом  [c.270]

    Илиды фосфора реагируют с диоксидом углерода, давая выделяемые соли 64 [Й6], которые либо гидролизуются до карбоновых кислот 65 (таким путем осуществляется превращение КК СНХ- КК СНСООН), либо (если ни К, ни К не являются водородами) димеризуются в аллены. [c.407]

    Образование солей. При взаимодействии с основаниями (реакция нейтрализации), с окислами или с активными металлами водород карбоксильной группы кислоты замещается на металл и образуются соли карбоновых кислот. Например  [c.157]

    Взаимодействие с металлами. Карбоновые кислоты реагируют с некоторыми металлами с образованием солей и водорода, например  [c.399]

    Эти методы представляют собой подходящие, хотя и более длин-ные, пути к циклоалканам, поскольку кислородную функцию можно обычно заменить на водород, используя рассмотренные ранее реакции. Некоторые из этих методов пригодны и для синтеза средних циклов, которые не удается получать прямыми методами конденсации. Сухая перегонка солей карбоновых кислот и щелочноземельных металлов обычно используется для получения диалкил-кетонов. Внутримолекулярный вариант этой реакции можно применить для синтеза циклических кетонов из солей дикарбоновых кислот. Так, легко и с хорошими выходами образуются циклопен-таноны и циклогексаноны. Циклопентанон можно получить с выходом 80% сухой перегонкой адипиновой кислоты в присутствии каталитических количеств гидроксида бария. [c.141]

    Сульфамиды обычно представляют собой бесцветные кристаллические вещества. Они гидролизуются медленнее, чем амиды карбоновых кислот. Соединения, которые содержат при атоме азота также еще и атом водорода, обладают под действием сильного —/-эффекта сульфо-нильной группы кислыми свойствами и образуют со щелочами соли [см. разделение аминов по Гинсбергу, раздел 2.2.11.1, реакции аминов, реакция (5)]. [c.479]

    С сильными основаниями карбоновые кислоты дают соли, которые в растворах не расщепляются гидролитически . Водород карбоксила замещается не только атомами металлов, но также, хотя несколько и труднее, углеводородными остатками с образованием сложных эфиров, которые формально схожи с солями. [c.348]

    При взаимодействии с гидроксидами (реакция нейтрализации), основными оксидами и металлами, стоящими в ряду ак тивности до водорода, карбоновые кислоты образуют соли К-СООН + ЫаОН КСООЫа + НгО  [c.344]

    Анионоактивные ПАВ в водных растворах диссоциируют на отрицательно заряженные ионы углеводородной части молекулы и положительно заряженные ионы металла или водорода. К таким ПАВ относятся карбоновые кислоты и их соли, сульфокислоты и сульфо-соли, сульфоэфиры, алкиларилсульфонаты (сульфонол) и алкил-сульфонаты (натриевые или аммонийные соли сульфокислот жирного ряда) и др. [c.182]

    От обыкновенных карбоновых кислот нефти асфальтогеновые кислоты отличаются более высоким молекулярным весом и трудной растворимостыв в воде натровых солей медные соли их не растворяются в бензине. Элементарный состав этих кислот показывает, что в их состав входит углерод, водород, кислород и до 3% серы. [c.461]

    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]


    Этот метод не годится для получения кислых этиловых эфиров, потому что гидроокись бария недостаточно растворима в этаноле он непригоден также для азелаиновой кислоты НООС (СН2)7—СООН и низших кислот, бариевые соли которы> слишком хорошо растворимы в метаноле. В этих случаях может быть с успехом использован другой метод, основанный на том, что из зквивалентных количеств ди-карбоновой кислоты и диэфира в присутствии хлористого водорода об-,разуется равновесная смесь, содержащая моноэфир кислый этиловый эфир себациновой кислоты С2Н5ООС—(СНг) в— СООН получается этим методом с выходом 60—65%, а кислый этиловый эфир адипиновой ислоты С2Н5ООС—(СНг)4—СООН — с выходом 71—75%. [c.71]

    Реакция замещения диазогруппы на арил находит успешное применение в открытом Пшорром (1896) общем методе синтеза производных фенантрена. При конденсации о-нитробензальдегида с фенилацета-том натрия (или его производными) и уксусным ангидридом по Перкину образуется главным образом г с-а-фенил-о-нитрокоричная кислота. Последнюю превращают в амин, а затем в диазониевую соль, которая под каталитическим действием порошкообразной меди отщепляет азот и хлористый водород и с замыканием кольца образует фенантрен-9-карбоновую кислоту. [c.264]

    В присутствии пиридина или других третичных оснований, связывающих хлористый водород, реакцию галогенангидридов с кислотами можно провести в мягких условиях. Этого же можно добиться, используя щелочные соли карбоновых кислот. Таким путем мо Гут быть получены и омешанные ангидриды ). [c.101]

    Реакции между натриевыми солями карбоновых кислот и хлорокисью фосфора, тионялхлоридом, трихлоридом или пентахлоридом фосфора используются редко. Их. применяют, например, для синтеза ацетилхлорида особой чистоты или таких хлорангидридов, которые не могут быть перегнаны в присутствии хлористого водорода. [c.103]

    Этот синтез похож на синтез Гаггермана — Коха, но в данном случае формилгалогенид выделяется перед введением в реакцию. Фтористый формил формилирует ароматические углеводороды (а также спирты, фенолы, соли карбоновых кислот, тиоспирты и первичные и вторичные амины) [10]. Этот реагент можно получить из муравьиной кислоты и кислого фторида калия или из смешанного ангидрида уксусной и муравьиной кислот и безводного фтористого водорода. В качестве катализатора следует предпочесть трехфтористый бор выходы с ароматическими углеводородами колеблются от 56 до 78%. [c.50]

    ИМИДЫ КАРБОНОВЫХ КИСЛОТ, органические соед. общих ф-л (ЯСО)зКН (линейные имиды) и I (циклич. имиды — производные двухосновных к-т). Последние наиб, важны. И. к. к. обладают слабыми кислотными св-вами водород ЫН-грунпы м. б. замещен на металл при взаимод. с алкоголятами щел. металлов или на галоген при действии, напр., НаОВг. Легче, чем амиды, гидролизуются до к-т. Получ. действие ЫНз или первичных аминов на ангидриды двухосновных карбоновых к-т нагревание производ ных карбоновых к-т, напр, аммониевых солей ацилирова ние амидов карбоновых к-т. См., напр., М-Бромсукципимид Имиды орто- и пери-ди- или тетракарбоновых кислот Сахарин, Сукцинимид, Фталимид, М-Хлорсукцинимид Большое пром. значение имеют полиимиды. [c.217]

    Триазол получали окислением замещенных 1,2, 4-триа-золов , действием на уразол пятисернистого фосфора , нагреванием эквимолярных количеств формилгидразина и формамида , отщеплением аминогруппы от 4-амино-1,2,4-триазола, окислением 1,2,4-триазолтиола-3(5) перекисью водорода декарбо-ксилированием 1, 2,4-триазол-З(5)-карбоновой кислоты , нагреванием солей гидразина с формамидом быстрой перегонкой смеси гидразингидрата с двумя молярными эквивалентами форм-амида", нагреванием N, N -диформилгидразина с избытком аммиака в автоклаве в течение 24 час при 200°реакцией 1,3,5-триазина с солянокислым гидразином [c.148]

    Так же как и все другие методы, основанные на кислотных свойствах карбоксила, определение основности карбоновых кислот по анализу их металлических солей не является вполне надежным, так как не содержащие карбоксил органические вещества с ясно выраженным кислотным характером, например некоторые фенолы (см. А, II, 1), в такой же степени способны давать металлические соли, как и карбоновые кислоты. Kp ML того металлические соли дают и некоторые вещества, почти не обладающие кислотными свойствами. Возможность образования кислых и основных солей, в которых процентное содержание металла не отвечает числу активных атомов водорода, также увеличивает возможность ошибок и неверных заключений. Затем многие соли кристаллизуются с водой, что усложняет производство определения. Для некоторых кислот не удается получить нейтральные соли в чистом состоянии. [c.355]

    Синтез Перкина основан на способности альдегидов присоединять различные вещества к двойной связи карбонильной группы. Особенно легко альдегиды присоединяют вещества, содержащие подвижный атом водорода. Таковыми являются и натриевые соли алифатических и арил-алифатических карбоновых кислот, а-водородные атомы которых обладают значительной 1юдв1-жн0стью благодаря непосредственному соседству карбонильной группы карбоксила. Таким образом альдегиды [c.410]

    Газы, подвергаемые очистке растворами этаноламинов, могут содержать большое число примесей, необратимо реагирующих с аминами. К таким соединениям относятся карбоновые кислоты (муравьиная, уксусная и масляная), сернистые соединения (сероокись углерода и сероуглерод), соляная кислота и цианистый водород. С этими соединениями, кроме цианистого водорода, амины образуют простые, термически стойкие соли. [c.58]


Смотреть страницы где упоминается термин Водород карбоновых кислот и их солей: [c.99]    [c.73]    [c.1123]    [c.472]    [c.330]    [c.393]    [c.67]    [c.344]    [c.116]    [c.117]    [c.10]    [c.85]    [c.294]    [c.148]    [c.64]    [c.143]    [c.162]   
Изотопы в органической химии (1961) -- [ c.297 , c.302 , c.421 , c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоновые солей



© 2025 chem21.info Реклама на сайте