Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты в основных растворителях

    Как указано в предыдущем сообщении , анализ зависимости констант скоростей диссоциации нитроалканов от состава смешанного растворителя привел нас к выводу, что активированное состояние этой реакции стабилизируется основными растворителями, а исходное состояние (анион карбоновой кислоты) - кислотными растворителями. Такое влияние среды должно отражаться также на зависимости эффектов заместителей от свойств смешанного растворителя. [c.1211]


    Основные сульфонаты обычно получают взаимодействием средних сульфонатов с оксидом или гидроксидом, металла при нагревании. Известен метод, заключающ-ийся в нейтрализации продукта сульфирования водным раствором аммиака или едкого натра (едкого кали) и дальнейшем проведении обменной реакции с водным раствором хлорида кальция или гидроксида щелочноземельного металла при различных температурах [пат. США 3772198 а. с. СССР 526617]. Процесс можно интенсифицировать за счет увеличения скорости реакции и исключения высокотемпературной стабилизации продукта. Полученный таким путем сульфонат может быть превращен в высокощелочной сульфонат с различной степенью щелочности. Обменную реакцию можно проводить в присутствии промоторов — карбоновых кислот С —С4, алкилфенола или алифатического спирта [а. с. СССР 502930, 639873] с применением углеводородных растворителей, низкомолекулярных спиртов С1—С4 или их смесей. [c.78]

    Этернфикация является одним из основных методов синтеза сложных эфиров карбоновых кислот и предельных спиртов, широко используемых в качестве растворителей, пластификаторов, смазок и присадок, а также полупродуктов для различных синтезов. [c.236]

    Катализаторам жидкофазного окисления являются чаще всего соли кобальта или марганца. Можно проводить окисление в среде окисляемого углеводорода и в среде полярных органических растворителей, в основном алифатических и ароматических карбоновых кислот и кетонов. [c.42]

    Вследствие сочетания различного рода взаимодействий между растворителем и участниками реакции положение равновесия зависит от многих факторов. Так, протолитическое равновесие между кислотой и основанием при изменении растворителя зависит не только от кислотности (основности) растворителя, но и от его способности к образованию координационных соединений. Поэтому, например, константы диссоциации карбоновых кислот в воде в 10 —10 раз больше, чем в безводном этаноле. [c.452]

    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]


    Пусть первый из участников процесса гетеромолекулярной ассоциации компонент А обладает кислотной природой (например, какая-либо карбоновая кислота или фенол), а компонент В — основной природой (например, какой-либо амин или, как в приведенном только что примере, (диметилсульфоксид). В индифферентных растворителях взаимодействие между А и В описывают простой схемой  [c.52]

    С изменением строения растворяемых молекул избирательность растворителя будет меняться. Так, например, избирательность одного и того же растворителя будет совершенно различна при извлечении из нефтяных фракций ароматических углеводородов и при извлечении карбоновых кислот из их смеси с углеводородами Если в первом случае основной причиной избирательного растворения является различная поляризуемость молекул углеводородов [6], то во втором случае — различие значений ди-польных моментов, осложненное образованием водородных связей. [c.253]

    Амфипротные растворители, обладающие как кислотными, так и основными свойствами вода, спирты, карбоновые кислоты, первичные и вторичные амины. [c.120]

    В разд. 3.3.1 и 4.2.1 уже рассматривались равновесия типа кислота Бренстеда — основание Бренстеда, в которых сам растворитель участвует как кислота или как основание. В этом разделе будут приведены примеры влияния растворителей на такие реакции переноса протона, в которых растворитель непосредственно не участвует. Интерес к исследованию такого рода кислотно-основных равновесий в неводных растворителях стимулировали основополагающие работы Барроу и др. [164], изучавших кислотно-основные реакции между карбоновыми кислотами и аминами в тетрахлорметане и хлороформе. [c.160]

    В присутствии соединений платины первичные и вторичные спирты легко окисляются кислородом [96]. Первичные спирты, как правило, окисляются легче вторичных, и в случае поли-гидроксисоединений, например углеводов, можно окислить только первичные гидроксигруппы. В щелочной среде первичные спирты с высокими выходами превращаются в соответствующие карбоновые кислоты, а в нейтральной среде при проведении реакции в органическом растворителе основными продуктами являются альдегиды [97]. Стероиды, содержащие две или более гидроксигруппы, одна из которых расположена у атома С-3, окисляются именно по этому атому [схема (8.39)] [98]. Катализируемое соединениями платины окисление обычно проводят в условиях, аналогичных условиям каталитического гид- [c.343]

    Протогенные растворители отличаются ярко выраженными протонодонорными свойствами. К протогенным растворителям относят карбоновые кислоты (уксусную, муравьиную и др.), серную кислоту и др. Протогенные растворители усиливают основные свойства соединений. Например, в среде безводной уксусной кислоты такое слабое в воде основание, как пиридин (А в= 1.5-10 ), является основанием средней силы (А в = = 3,5-10-=)  [c.32]

    На слоях силикагеля Г можно разделять смеси многоосновных карбоновых кислот, используя полярные основные и кислые растворители. В настоящее время используют следующие смеси  [c.359]

    Поскольку ДНФ-аминокислоты как карбоновые кислоты склонны в органических растворителях к ассоциации, то, как правило, в растворитель следует добавить небольшое количество ледяной уксусной кислоты, подавляющей ассоциацию и этим устраняющей основную причину образования хвоста. Следует отметить, что эффект уксусной кислоты наблюдается в растворителях, содержащих большое количество пиридина и поэтому рассматриваемых как основные. Наряду с этим ледяная уксусная кислота повышает элюирующую силу . Однако благоприятное действие ледяной уксусной кислоты при анализе методом ХТС (силикагель Г) эфирорастворимых ДНФ-аминокислот наблюдается только в области концентраций от 0,5 до 5 об.%. Более высокие концентрации действуют так же, как и большое содержание воды, т. е. ухудшают разделительные свойства растворителя. [c.418]

    Кислотность нефтепродуктов обусловливается в основном наличием в них нафтеновых (карбоновых) кислот. Для топлив и растворителей определяют кислотность, которая выражается в мг гидроксида калия, израсходованного на нейтрализацию 100 мл продукта. [c.37]

    Для изучения термического разложения мочевин в спирте использовали относительно быструю реакцию образующегося изоцианата со спиртом-растворителем, применяемым для завершения разложения [310, 312]. Скорость этой реакции, как уже было установлено для аналогичных систем, имеет первый порядок по мочевине. Обычно скорость реакции возрастает при увеличении основности спирта в следующем ряду этиленгликоль > глицерин > анизиловый спирт > бензиловый спирт > пропандиол-1,2 > диэтиленгликоль, триэтиленгликоль > бута-тандиол-1,4. Эти скорости разложения, однако, ниже в спиртах, чем в карбоновых кислотах. Роль растворителя, как и в предыдущем случае, объясняется его способностью протонизировать один aT t азита в молекуле мочевины и отнимать протон от другого. [c.397]


    Активные терапевтические агенты кислотного или основного характера в таблетках и порошках могут быть оттитрованы непосредственно в неводной среде, если определе-ишо не мешают другие кислотные илт основные связующие вещества (см. табл. 76), Из тонкоизмельченной таблетки приготовляют в. шесь в соответствующем растворителе и проводят титрование кислоты илп кислотные аналоги титруют алкоголятом щелочного металла илп гидроокисью алкиламмония, а основания — хлорной кислотой. Мешающие примеси, напрпмер стеариновую кислоту, можно удалить, если тонко измельченный порошок предварительно проэкстрагпровать петролейным эфиром или н-гексаном. Большинство соединений, содержащих полярные функциональные группы, а также соли карбоновых кислот, основные гидрохлориды (сульфаты и т. д.) не растворяются в этих растворителях. Стеарат магния растворяется в уксуспой кислоте и переходит в ацетат. В таком случае порошкообразный образец суспендируют в очищенной уксусной кислоте, иногда ири слабом нагревании, и титруют хлорной кислотой. К атому раство1>у добапля-ют нейтрализованный 3%-ный раствор ацетата ртути(И) в уксусной кислоте, при этом образуются недиссоциирующий галогенид ртути(П) и свободное основание (ацетат) из основного хлоргидрата. Это основание титруют хлорной кислотой. На титрование фармацевтических препаратов хлорной кислотой в различной степени влияют связующие вещества таблеток. Степень мешающего воздействия зависит от использованного растворителя так, в хлороформе она меньше, чем в уксусной кислоте [133] (табл. 76). (В табл. 76 [c.227]

    Успехи органической химии привели к синтезу многих но-еых органических растворителей с большим диапазоном разнообразных свойств, а с развитием лабораторной техники появилась возможность работать с новыми неорганическими растворителями при повышенных и пониженных температурах и без-Доступа влаги. Все это позволило в некоторых случаях замедлить воду, являющуюся до сих пор универсальным растворителем. Особенно часто воду заменяют другими растворителями при кислотно-основноМ титровании. Причинами служат плохая растворимость некоторых веществ в воде, что особенно характерно для многих органических соединений мешающее влияние гидролиза, например, при титровании кислот в присутствии хлоридов или соответственно ангидридов кислот нивелирующий эффект растворителя, из-за которого невозможно Проводить дифференцированное титрование сильных кислот или оснований в их смеся х высокая полярность воды, что-исключает возможность диффренцированного титрования карбоновых кислот в их смесях. Применению неводных растворителей способствовало также создание чувствительных и надежных инструментальных методов индикации точки эквивалентности. [c.337]

    Однако применяемая в качестве катализатора кислота про-тоннрует не только кислородный атом карбонила, но и молекулы нуклеофильного участника реакции, превращая его в сопряженную кислоту. Поэтому оптимальное значение pH для катилизируемых кислотами реакций лежит в области, где карбонильная группа уже достаточно сильно протонирована, а основный партнер реакции еще не лишен н клеофильной активности. По этому же типу реакции катализируются карбоновыми кислотами и такими растворителями, как спирты и вода. [c.51]

    Таким образом, кислоты в растворах взаимодействуют с растворителем, это взаимодействие обязано водородной связи. Проведенное исследование показало, что смещение ассоциированной полосы ОВ-группы ряда карбоновых кислот различной силы под влиянием ацетона и диоксана примерно одинаково и не зависит от силы кислоты. В то же время установлено, что величина смещенпя частоты ОВ-грунпы многих кислот под влиянием растворителя тем больше, чем сильнее его основность. Это согласуется с тем обстоятельством, что изменение силы ряда кислот одной природы под влиянием данного растворителя в первом приближении постоянно (см. гл. VI). [c.256]

    В бензоле относительные константы. йГохн индикаторным методом были определены сначала Бренстедом, а затем Лямером и Даунсом, в хлорбензоле — Грифитсом. Исследования показали, что относительные константы карбоновых кислот мало изменяются по сравнению с водными растворами. Катионные кислоты сильно изменяют свою силу относительно незаряженных кислот. Сильные кислоты в апротоиных растворителях становятся слабыми. Прибавление основных растворителей к апротонным сильно увеличивает электропроводность растворов сильных кислот и сравнительно мало изменяет электропроводность слабых кислот. [c.284]

    К первому типу относится дифференцирующее действие очень кислых растворителей на силу кислот. По мере того, как усиливаются кислые свойства растворителя, все меньтпе становится кислот, которые могут проявить свои кислые свойства. Происходит дифференцирование их силы в том смысле, что большое количество веществ, которые в воде были кислотами, в кислых растворителях уже не являются кислотами. Например, карбоновые кислоты в уксусной кислоте уже не проявляют своих кислых свойств. Только трихлоруксусная кислота проявляет еще кислые свойства, но в муравьиной кислоте уже п она не является кислотой. Таким образом, дифференцирующее действие кислых растворителей состоит в том, что в них число веществ, проявляющих свои кислые свойства, становится меньше. Наоборот, в таких растворителях число веществ, проявляющих основные свойства, будет увеличиваться и тем в большей степени, чем сильнее кислые свойства растворителя. В жидком фтористом водороде даже углеводороды проявляют свои основные свойства. [c.287]

    Карбоновые кислоты декарбоксилируются [211] под действием тетраацетата свинца, давая разнообразные продукты, включая сложные эфиры типа ROA (образующиеся при замещении СООН на ацетокси-группу), алканы RH (см. т. 2, реакцию 12-39) И, если субстрат содержит 3-атом водорода, алкены, получающиеся в результате элиминирования Н и СООН, а также ряд других продуктов, являющихся результатом перегруппировок, внутримолекулярных циклизаций [212] и взаимодействия с молекулами растворителя. Если R — третичная группа, основным продуктом обычно является алкен, который часто образуется с хорошим выходом. Высокие выходы алкенов достигаются также в случае первичных или вторичных групп R, но для этой цели вместо тетраацетата свинца используют систему u(0A )2 — РЬ(0Ас)4 [213]. В отсутствие ацетата меди неразветвленные кислоты дают в основном алканы (хотя выходы, как правило, низки), а кислоты, имеющие разветвление в а-положении, могут давать сложные эфиры или алкены. Сложные эфиры с хорошими выходами получены из некоторых разветвленных кислот, из р,у-ненасыщенных кислот, а также из кислот, где R = бензильная группа. у-Кетокислоты с хорошими выходами приводят к а,р-ненасыщенным кетонам [214]. В окислительном декарбоксилировании использовались и другие окислители, включая соединения Со(П1), Ag(II), Mn(III) и Се (IV) [215]. [c.289]

    Низшие алифатические сложные эфиры представляют собой нейтральные, приятно пахнущие жидкости, в основном нерастворимые в воде, с температурой кипения ниже, чем у соответствующих карбоновых кислот. Они растворимы в большинстве органических растворителей, некоторые сами используются в качестве растворителя (например, этилацетат, амилацетат = = 3-метил-1 -бутилэтаноат). [c.158]

    Пример 1. Определить рКа /г-хлорбеизойной кислоты в 40 % этаноле. Основная реакционная серия диссоциации карбоновых кислот имеет индекс 1—П (Приложение П. 1). Реакционная серия с этим индексом и указанным растворителем приведена в Приложении П.4 (№ 4). Из этой же таблицы видно, что р реакции 1,668, Ко = —4,871, и для расчета следует пользоваться уравнением (5) 18А = 1й7(о + ра. [c.392]

    В методе, который среди новых синтетических методов образования пептидных связей является наиболее широко применяемым, используется ангидрид угольной и карбоновой кислот этот метод был разработан в 1951 г. одновременно в трех различных лабораториях [48, 54—56], В основном этот метод со- стоит в образовании смептаиного ангидрида в резуль.тате реак-пив между солью третичного амина и сс-ациламинокислоты нли пептида и алкильным эфиром хлоругольной. кислоты в инертном растворителе при низкой температуре. Затем к этому раствору смешанного ангидрида прибавляют эфир аминокислоты или пептида, который подлежит ацилиропанию. Выделение смешанного ангидрида не обязательно и даже не очень жела- тельно, хотя его можно выделить из аммонийной соли, получающейся в качестве побочного продукта. Так, при обработке ди-карбобензилокси-Ь-лизина в толуоле триэтиламином и изобути-ловым эфиром хлоругольной кислоты образуется смешанный ангвдрид VIII, который вступает в реакцию с этиловым эфиром [c.184]

    Метиловый эфир 5-метил-4-бензилфуран-2-карбоно-вой кислоты. В литровую трехгорлую колбу, снабженную мешалкой с затвором и обратным холодильником с хлоркальциевой трубкой, помещают раствор 37,7 г (0,2 моля) метилового эфира 4-хлорметил-5-метилфуран-2-карбоновой кислоты с т.кип.108 —10971 мм (см. Синтезы гетероциклических соединении , 2, стр. 47) в 500 мл абсолютного бензола и при перемешивании вносят небольшими порциями в течение 3 часов 30 г безводного треххлористого алюминия. Когда бурная реакция прекращается, смесь нагревают на водяной бане при 80 85° (температура бани) 4—5 часов. После прекращения нагревания колбу охлаждают льдом и солью и при помешивании вносят небольшими кусочками 50 — 60 г льда и приливают 60 — 70 мл разбавленной (1 1) соляной кислоты. Отделив бензольный слой, водный дважды экстрагируют эфиром, порциями по 60—80 мл, присоединяют к основному продукту и высушивают над прокаленным сернокислым натрием. Растворитель отгоняют в ваку- [c.26]

    Кольтгофф и Редди 96] отметили заметное различие в свойствах кислот и оснований в воде и в основном полярном апротонном растворителе с высокой диэлектрической проницаемостью типа ДМСО. Константа автопротолиза ДМСО равна 5 10 , по основности ДМСО лишь немного превосходит воду [96], но является более слабой кислотой, чем вода (ср. табл. 4). Сила некоторых кислот, лишенных заряда, показывает, что они отличаются в этом отношении от воды. Константа диссоциации пикриновой кислоты в ДМСО в 500 раз выше, чем в воде, а константа Диссоциации бензойной кислоты в воде в 10 выше, чем в ДМСО. Кольтгофф и Редди [96] объясняют эти результаты необычной устойчивостью пикрат-иона в ДМСО, но не видят причину аномально малой диссоциации карбоновых кислот [c.19]

    Поскольку практически невозможно найти растворители, отличающиеся друг от друга только диэлектрической проницаемостью при равных кислотности и основности, расчеты по уравнению (4.10) обычно плохо согласуются с экспериментальными даннылми. Кроме того, сольватирующая способность и полярность растворителя определяются не только его диэлектрической проницаемостью. Помимо чисто электростатического кулоновского взаимодействия существуют другие типы специфического и неспецифического взаимодействия, в том числе ион-ди-польное, диполь-дипольное, образование водородных связей и ионных пар и т. д. К тому же модель, используемая для описания электростатического взаимодействия, не учитывает реальные форму и размеры конкретных ионов. Например, в отличие от карбоновых кислот константа кислотности пикриновой кислоты при переходе от этанола к воде возрастает только в 1500 раз (см. табл. 4.1). Это объясняется делокализацией отрицательного заряда аниона пикриновой кислоты по всей довольно большой молекуле, в результате чего энтальпия сольватации этого аниона значительно уступает энтальпии сольватации анионов карбоновых кислот. Это означает, что при повышении сольватирующей способности растворителя стабильность пикрата меняется в иной степени, чем у анионов карбоновых кислот, в которых отрицательный заряд в большей или меньшей степени локализован только на двух атомах кислорода. [c.131]

    Применяемые растворители могут быть охарактеризованы с учетом их кислотности, основности или дипольных свойств. Адсорбенты, применяемые в ЖАХ, могут быть классифицированы аналогичным образом. На треугольнике растворителей, приведенном на рис. 171, обозначены также различные адсорбенты, применяемые в ЖАХ (см. также рис. 165, б). Оказалось, что силикагель и оксид алюминия, проявляя себя как кислотные фазы, удерживают преимущественно основные соединения - простые эфиры, амины и карбонильные соединения. Фазы с привитыми аминогруппами являются основными, поэтому они удерживают кислотные соединения - спирты, фенолы, карбоновые кислоты. Для фаз с привитыми цианогруппами характерны дипольные взаимодействия, поэтому на них предпочтительно удерживаются высокополярные соединения - нитрилы и нитросоединения. Силикагели с привитыми диольными группировками, по-видимому, относятся к IV группе фаз и проявляют как кислотные, так и основные свойства. Перечисленные типы фаз 8102 (или А12О3), МНг- 02, СЫ-5102 характеризуются экстремальной чувствительностью по отношению к определенным группам анализируемых вешеств. т.е. максимальные изменения селективности могут быть достигнуты при использовании одного из этих трех адсорбентов [151]. В один прекрасный день разработанный подход оптимизации селективности - 4 [c.84]

    Протогенныё растворители способны к отдаче протона. Сюда относятся жидкие галогеноводороды (H I, НВг), серная кюлота, безводная муравьиная, уксусная и др. В этих растворителях уменьшается число веществ, проявляюпщх кислые свойства. Например, в серной кислоте многие кислоты (как бензойная и др.) проявляют основные свойства. В уксусной кислоте карбоновые кислоты не проявляют кислых свойств. [c.35]

    Карбоновые кислоты, —С(0)0Н, образуют сильные межмолекулярЕ1ые водородные связи и существуют поэтому даже в парах, в основном в виде димеров. В жидкой и твердой фазе им свойственна широкая полоса валентных колебаний —ОН в интервале 3300-2500 см Мономеры карбоновых кислот характеризуются узкой слабой полосой при 3500-3550 смПолосы валентных колебаний С=0 кислот более интенсивны, чем соответствующие полосы кетонов и альдегидов. В жидкой и твердой фазе они расположены в области 1725-1700 смв сильно разбавленных растворах в неполярных растворителях, когда кислоты с тцествуют в виде мономеров, эта полоса наблюдается при 1760 см В насыщенных неразветвленных карбоновых кислотах частота колебаний уменьшается при удлинении цепи. Присоединение к карбоксильной группе электроотрицательного атома или группы увеличивает частоту колебания. [c.450]

    Первичные спирты легко окисляются до карбоновых кислот перманганатом калия в основных растворителях [89]. В нейтральных или кислых средах скорость реакции, как правило, очень мала. Обычно при использовании перманганата калия достигаются хорошие выходы продукта, за исключением тех случаев, когда первоначально образующиеся альдегиды или кетоны легко енолизуются. В таких случаях возможно окисление енольной двойной связи. [c.350]

    В отличие от триоксана, полимеризация мономерного формальдегида ускоряется в присутствии веществ как кислого характера (протонные и льюисовские кислоты, карбонилы металлов УЦ1 группы), так и основного (амины, амиды, имиды, четвертичные аммониевые основания, оксиды, гидроксиды и соли щелочных металлов, алкилфосфины и т. д.), а также соли высщих карбоновых кислот, металлы и сплавы. Для получения качественного высокомолекулярного продукта требуется мономер высокой степени чистоты (суммарное содержание примесей не выще 0,05%). Тепловой эффект реакции достаточно велик (63 кДж/моль), что на практике требует системы теплосъема. Полимеризацию мономера проводят, пропуская газообразный продукт через раствор с катализатором, т. е. в системе газ — жидкость. Хотя высокомолекулярный продукт может быть получен и в полярных растворителях (спирты и даже вода), на практике применяют насыщенные углеводороды (парафины, ароматические, алициклические). Чистый гомополимер сравнительно легко подвергается термоокислительной деструкции, например при сушке или при формовании изделий, причем этот процесс начинается с концевых групп. Для придания большей термической и химической устойчивости к макромолекулам в а, -положении присоединяют различные функциональные группы. Повышение предела термической устойчивости в зависимости от природы этих групп растет в ряду [21] гидроксильные <формильные <фенилуретановые <сложноэфирные < С простые эфирные. [c.193]

    Процесс получения азелаиновой кислоты озонолизом ненасыщен ных жирных кислот состоит в основном из двух последовательныл стадий озонолиза ненасыщенной кислоты и термического разложения образующегося озонида. В большинстве случаев озоноли.5 про юдят пропусканием кислорода, содержащего 2—7% озона, ерез раствор кислоты в органическом растворителе. В качество растворителей используются преимущественно органические моно карбоновые кислоты. Процесс озонолиза с образованием озонид<1 ненасыщенной кислоты проходит с большой скоростью и поэтому осуществляется без катализаторов. [c.148]


Смотреть страницы где упоминается термин Карбоновые кислоты в основных растворителях: [c.93]    [c.335]    [c.681]    [c.611]    [c.1319]    [c.266]    [c.155]    [c.67]    [c.491]    [c.157]    [c.128]    [c.33]    [c.49]    [c.480]    [c.637]   
Титрование в неводных средах (1971) -- [ c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Основность кислот

Растворители основные



© 2024 chem21.info Реклама на сайте