Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография распределительная на ионообменных смолах

    Впервые разделение углеводов методом распределительной хроматографии на ионообменных смолах в смесях растворителей различной полярности было описано в 1952 г. [1]. В последние годы метод был значительно усовершенствован. В обзорной статье [2] приведены данные о влиянии ряда факторов на разделение, а также примеры использования метода. В качестве элюента при разделении сахаров и их производных наиболее пригоден водный спирт, и далее речь будет идти только об этом элюенте. [c.55]


    В последнее время хроматография на целлюлозе заменяется распределительной хроматографией на ионообменных смолах с различными противоионами, которая допускает значительно большее разнообразие условий эксперимента. В колонке возникает неравномерное распределение компонентов растворителя между смолой и внешним растворителем. Например, в случае водного этанола относительное количество присутствующей воды будет больше в смоле, чем во внешнем растворителе это объясняет, почему смола предпочтительно удерживает полярные растворенные вещества [25]. [c.64]

    Для разделения и количественного определения аминокислот особенно эффективными оказались методы распределительной, адсорбционной и ионообменной хроматографии. Большое применение, в частности, получил метод Мура и Стейна, в котором исследуемый раствор пропускают через колонку, наполненную или крахмалом (твердый полярный адсорбент), или ионообменной смолой (сочетание адсорбции с ионным обменом), и затем связанные на колонке вещества вымывают с различной скоростью подходящими растворителями. Сбор и анализ отдельных фракций осуществляются при помощи автоматических приспособлений. Метод Мура и Стейна позволяет получить через 24 часа данные о полном аминокислотном составе образца белка, используя при этом только 2,5—3,5 мг белка. Для оценки эффективности и значения этого метода полезно напомнить, что старые и более грубые аналитические приемы требовали для получения данных о полном аминокислотном составе белка нескольких недель трудоемкой работы, связанной с расходованием десятков граммов белка. [c.35]

    Распределительная хроматография в тонких слоях. Структура и свойства бумаги оказывают существенное влияние на процесс разделения. Использование тонких слоев различных материалов. (волокно, целлюлоза, АЬОз, силикагель, ионообменные смолы и пр.) устраняет этот недостаток. В методе тонкослойной распределительной хроматографии принцип разделения тот же, что и в бумажной, — подвижная фаза движется сквозь неподвижную в тонком слое, разделяемые компоненты перемещаются с подвижной фазой вдоль движущегося потока с различной скоростью, образуя раздельные зоны. [c.209]

    Для выделения, очистки и анализа алкалоидов, антибиотиков, витаминов применяются ионообменные смолы (иониты), уголь, окись алюминия, силикагель, бентонит и другие сорбенты. Распределительная хроматография на бумаге, чаще всего нисходящая, применяется в анализе аминокислот, алкалоидов, сульфаниламидных препаратов, антибиотиков и других органических соединений, а также смесей катионов и анионов. [c.516]


    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Для объяснения процессов, происходящих в гранулах геля, был предложен ряд гипотез подробно они будут рассмотрены в гл. 1И. Здесь же мы лишь констатируем следующее смесь веществ можно разделить по молекулярным весам на слое гранулированного геля соответствующей пористости. Не подлежит сомнению, что это хроматографический процесс, поскольку растворенные вещества проникают в неподвижную фазу, в результате чего смесь разделяется на компоненты. В настоящее время существует в основном лишь два способа подобрать термин для нового хроматографического метода для этого используют либо применяющийся носитель (например, хроматография на бумаге), либо процесс, который, как полагают, лежит в основе разделения (например, распределительная хроматография). В соответствии с этим метод разделения ионов на заряженном полимере можно назвать либо хроматографией на ионообменных смолах, либо ионообменной хроматографией. То же относится и к обсуждаемому здесь методу. В табл. 1 приведены все предложенные для него названия, каждое из которых имеет как преимущества, так и недостатки. [c.20]

    РАСПРЕДЕЛИТЕЛЬНАЯ ХРОМАТОГРАФИЯ НА ИОНООБМЕННЫХ СМОЛАХ [c.55]

    Разработаны различные виды хроматографических методов. Так, известны газовая хроматография, в которой подвижной фазой является газовый раствор, и жидкостная хроматография, в которой подвижная фаза-—жидкость. Эти два типа хроматографии подразделяются далее в зависимости от природы сорбирующей среды. Для адсорбционной хроматографии необходимо твердое вещество (или жидкость) с активной поверхностью. Для ионообменной хроматографии используют цеолиты или органические ионообменные смолы. Для распределительной хроматографии требуется стационарная полярная или неполярная жидкость, нанесенная на какой-либо твердый носитель. Хроматография на бумаге может быть или адсорбционной (если используется только бумага), или распределительной (если стационарная жидкая фаза удерживается бумажной подложкой). На рис. 36.2 приведен весьма впечатляющий пример применения хроматографии на бумаге для анализа гемоглобина. [c.210]

    Распределительная хроматография на ионообменных смолах была с успехом применена для разделения моно- и олигосахаридов, альдитов и производных сахаров, не содержащих ионогенных группировок, например гликозидов и частично метилированных сахаров. Этот метод можно использовать как в аналитических, так и в препаративных це- [c.56]

    Распределительная хроматография на ионообменных смолах [c.18]

    В качестве адсорбентов (поглотителей) применяют активную окись алюминия, силикагель, активные угли, а в последнее время стали применять богатый ассортимент ионитов как природных, (цеолиты), так и синтетических (ионообменные смолы). Кроме того, все шире начали применяться в определенных процессах и жидкие поглотители распределительная хроматография), которые вводят в соответствующий твердый носитель (например, в ионообменные смолы путем набухания их в жидком поглотителе). Иногда в состав поглотителей вводят вещества, образующие соединения с некоторыми из компонентов разделяемой системы это часто оказывается эффективным средством усиления разделяющей способности поглотителей. [c.373]

    По природе сорбента различают адсорбционную, распределительную (абсорбционную) и ионообменную хроматографии. В случае адсорбционной хроматографии сорбция происходит на поверхности твердого тела — адсорбента. В распределительной хроматографии компоненты абсорбируются жидкостью, нанесенной на твердый носитель. В ионообменной хроматографии сорбентом являются ионообменные смолы — полиэлектролиты, содержащие основные (—ЫНз —ЫН— —М=) или кислотные (—ЗОдН —СООН —5Н) группы, и процесс разделения основан на обратимом ионном обмене между ионообменной смолой и компонентами смеси. Ионообменная хроматография существует только в жидкостном варианте. [c.46]


    Хроматография в тонких слоях. Одним из недостатков хроматографии на бумаге является зависимость процесса разделения от структуры и свойств бумаги. Эти качества довольно трудно воспроизводимы. Для разделения веществ затрачивается много времени. Метод хроматографии в тонком слое (ХТС), предложенный советскими учеными Н. А. Измайловым и М. С. Шрайбер (17], по технике выполнения являющийся новым вариантом распределительной хроматографии, устраняет многие из этих затруднений. Применение самых разнообразных материалов делает метод поистине универсальным. Вместо волокон целлюлозы в распоряжении исследователя находятся порошки различных сорбентов окись алюминия, силикагель, ионообменные смолы, обеспечивающие высокую скорость фильтрации растворов [18]. [c.80]

    Распределительная хроматография на бумаге позволяет разделить смесь различных компонентов, но выделяемые при этом количества веществ часто бывают недостаточны для полной их характеристики. В этих случаях разделяют смесь на хроматографических колонках, применяя различные адсорбенты уголь, целлюлозу, ионообменные смолы [28, 33, 42]. [c.74]

    В зависимости от применяемого адсорбента различают адсорбционную хроматографию (применяется твердый адсорбент), распределительную хроматографию (твердая фаза служит лишь для удержания жидкости, не смешивающейся с растворителем, которая выполняет роль поглотителя разделяемых веществ) и ионообменную хроматографию (в качестве адсорбента применяются ионообменные смолы). Конструкции колонок для жидкостной хроматографии показаны на рис. 33. [c.58]

    В некоторых случаях при проведении распределительной хроматографии (особенно у сильно полярных веществ) начинают проявляться процессы адсорбции [7]. При определенных условиях происходит ионный обмен на карбоксильных группах бумаги. Бумага проявляет себя как ионообменная смола с очень малой емкостью. На явления адсорбции и ионного обмена следует обращать особое внимание при исследованиях методом бумажной хроматографии с радиоактивными элементами без носителя, так как вследствие адсорбции могут иметь место потери активности. [c.265]

    На основе нингидриновой реакции были разработаны методы количественного определения аминокислот, в частности метод распределительной хроматографии на бумаге, впервые внедренный в 1944 г. (А. Мартин и Р. Синдж). Эта же реакция используется благодаря своей высокой чувствительности в автоматическом анализаторе аминокислот. Впервые такой прибор сконструировали Д. Шпакман, С. Мур и У. Стейн (рис. 1.7). После разделения смеси аминокислот в колонках, заполненных специальными ионообменными смолами (сульфополистирольный катионит), ток элюента из колонки поступает в смеситель, туда же поступает раствор нингидрина интенсивность образующейся окраски автоматически измеряется на фотоэлектроколориметре и регистрируется самописцем. Этот метод нашел широкое применение в клинической практике при исследовании крови, мочи, спинномозговой жидкости. С его помощью за 2—3 ч можно получить полную картину качественного состава аминокислот в биологи- [c.42]

    В последние годы широкое распространение получил метод хроматографического разделения веществ в тонком слое (0,1—0,5 мм) носителя, нанесенного на стеклянную пластинку. По способу проведения этот метод сходен с хроматографией на бумаге, однако вместо волокон целлюлозы в качестве носителя могут использоватьсй разнообразные сорбенты окись алюминия, активированный уголь, силикагель, ионообменные смолы, неорганические ионообменники и т. п. При разделении веществ в тонком слое в зависимости от поставленной задачи могут быть использованы принципы либо адсорбционной, либо распределительной, либо ионообменной хроматографии. По сравнению с бумажной хроматографией разделение в тонком слое в большинстве случаев проводится значительно быстрее. Например, методом тонкослойной хроматографии на смеси гипса и силикагеля отделение ионов 1102 + от смеси катионов Ре, ТЬ, АГ, Си и других было осуществлено за 10—1Б мин. [c.195]

    Существует еще много других методов хроматографии — осадочная, газовая, газо-жидкостная и др., однако наибольшее значение при работе с веществами биохимического значения, антибиотиками, лекарственными препаратами имеют ионообменная и распределительная хроматографии. Успехи ионообменной хроматографии в значительной мере обусловлены развитием синтеза ряда специальных ионообменных полимеров или смол (ионитов). [c.115]

    Сравнение нескольких методов хроматографии олигомерных сахаров с р-(1->-4)-связанными звеньями п-ксилозы [103] показывает, что для препаративных целей проникаюшая хроматография на геле полиакриламида уступает хроматографии на смеси уголь—целит и распределительной хроматографии на ионообменных смолах. Однако установлено, что разделение низших гомологов (до 5 звеньев) сахаров гель-проникающей хроматографией на ионообменных смолах в воде дает наиболее удовлетворительные результаты. Метод разделения на смеси уголь—целит был по меньшей мере удовлетворителен для аналитических целей, но в то же время этот метод можно применять в препаративных [c.95]

    Г. Л. Старобинец и С. А. Мечковский в 1961 г. предложили использовать в качестве гидрофильных носителей для распределительной хроматографии ионообменные смолы [100]. При этом подбирают такие условия, чтобы не происходила ионообменная сорбция разделяемых элементов (например, для разделения смеси анионов используется катионит). Неподвижной фазой служит тонкая пленка воды на поверхности мелких зерен ионита. Смола является носителем и не принимает участия в процессах разделения. [c.152]

    Л. Н. Москвин, Б. К. Преображенский и Л. Н. Ржани-цыиа [130] колоночным методом распределительной хроматографии, используя в качестве гидрофильного носителя ионообменную смолу, успешно разделили катионы ртути, цинка и кадмия, а Э. А. Чувелева, П. П. Назаров и К. В. Чмутов [131] — некоторые редкоземельные элементы. [c.176]

    Существует еще много Других методов хроматографии — осадочная, газовая, газо-жидкостная и др., однако наибольшее значение при работе с веществами биохимического значения, антибиотиками, лекарственными препаратами и др. имеют ионообменная и распределительная хроматографии. Успехи ионообменной хроматографии в значительной мере обусловлены развитием синтеза ряда специальных ионообменных полимеров или смол (ионитов). Различают два основных вида ионитов 1) катиониты, способные к обмену катионов, представляющие собой сетку высокол олекулярных полиэлектролитов с многочисленными yльфoгpyппa п (рис. 44) карбоксильными группами и др. (амберлит Л7 -100, дауэкс-50, отечественные КВ-4, СБС и др.) и 2) аниониты, способные к обмену анионов (ОН , С1- и др ) и представляющие собой сетку высокомолекулярных катионов (амберлит Л/ А-400, дауэкс-2, вофатит-М, отечественные ЭДЭ-10, ПЭК и др.). Поглотительные емкости ионитов доходят до 3—10 мэкв на 1 г ионита. Имеются также окислительно-восстановительные иониты (получаемые псли-конденсацией гидрохинона, пирогаллола и пирокатехина с формальдегидом и фенолом), иониты с оптически-актив-ными группировками (для разделения оптических изоме- [c.129]

    Чрезвычайно эффективным средством фракционирования белков из смеси оказалась колоночная хроматография с гидроксилапатитом, различными ионообменными смолами и производными целллюлозы в качестве носителей. При выделении и очистке белков используют четыре основных типа хроматографии адсорбционную, распределительную, ионообменную и аффинную (хроматография по сродству)-в соответствии с разными физическими и химическими механизмами, лежащими в основе каждого из них. Хроматография широко применяется не только для выделения белков, но и для разделения множества других органических и неорганических веществ, входящих в состав живых организмов. [c.27]

    Водные фазы удерживаются силикагелем, ионообменными смолами [135]. В качестве носителя неподвижной фазы для хроматографии неорганических веществ находит применение целлюлоза. Рекомендуют [539] предварительно активировать целлюлозу кипячениел с 5%-пой НКОз в течение нескольких минут. Так, водная фаза, содержащая следы радиоизотопов цинка и кадмия, удерживалась природной и зал1ещенной целлюлозой (фосфат целлюлозы), а следы радиоизотопов ртути были отделены в диэтиловом эфире [1012]. Предложено [539] отделять ртуть от Си, С(1, В1, РЬ методом распределительной хроматографии на целлюлозе. Смесь ионов Нд, С(1, Ъп была успешно разделена с помощью распределительной хроматографии на колонке, заполненной ионитом [212]. Подвижной фазой служила тонкая пленка воды на поверхности мелких зерен ионита, что обусловливало большую скорость процессов обмена между фазами. Сама же смола не принимает при этом участия в процессах разделения. [c.60]

    Хроматографическое разделение аминокислот осуществляется при помощи различных адсорбентов активированного угля, оксида титана, селикагеля, ионообменных смол и др. В последнее время широко применяют метод распределительной хроматографии на бумаге. [c.41]

    Определение моносахаридного состава проводится анализом продуктов кислотного гидролиза или. чаще, мета-нолиза сахарида. Состав продуктов кислотного гидролизата анализируется с помощью хроматографии или электрофореза на бумаге. Нередко используется коммерческий углеводный анализатор, разделение осуществляется на ионообменных смолах методом распределительной хроматографии в водно-спиртовой смеси или в виде боратных комплексов сахаров. Скорость гидролиза гликозидных связей, образованных остатками нейтральных, амино- и дезокси-сахаров, различна. Легче всего отщепляются остатки сиаловых (N-ацетилнейраминовой, N-гликолилнейраминовой) кислот, труднее всего расщепляются свяэи, образованные остатками амино-сахаров и уроновых кислот. Фуранозиды гидролизуются значительно быстрее пиранозидов. В итоге при гидролизе олигосахарида может иметь место неполное расщепление связей или кислотная деструкция образующихся моносахаридов, что искажает результаты анализа. Лучшие результаты дает метанолиз в присутствии газообразного хлористого водорода (1.7 н. H l, 80 С, 18 ч) — в этом случае образуются метилгликозиды, устойчивые к кислотной деструкции. Качественный и количественный состав продуктов метанолиза определяется методом газожидкостной хроматографии в виде триметилсилильных или трифторацетильных производных. [c.463]

    Избирательность различных материалов, используемых для гель-фильтрации, позволила использовать их в других методах разделения. Так, гели сефадексов применяются в адсорбционных методах, тонкослойной и распределительной хроматографии, а также в качестве носителя при зонном электрофорезе. Сефадексы с ионообменными свойствами (диэтил-, аминоэтил-, карбоксиметил-, сульфоэтнлпроизводные декстранового полимера) обладают одновременно преимуществами ионообменных смол и материалов на основе целлюлозы. [c.478]

    При выборе наиболее подходящего метода разделения стероидов в каждом конкретном случае необходимо учитывать следующие факторы а) масштаб, т. е. количество разделяемой смеси б) количество выделяемого или анализируемого стероида в смеси, т. е. компонентный состав смеси в) физико-химическую характеристику стероидов, подвергающихся разделению, т. е. их полярность, растворимость и т. д. г) строение подвергающихся разделению стероидов. Стероиды резко различаются по своей полярности— от стероидов, этерифицированных жирными кислотами, липофильный характер которых аналогичен липофильному характеру жиров и парафинов, до стероидных гликозидов или производных желчных кислот, заметно растворимых в воде. Тем не менее вследствие наличия большого углеродного скелета молекулы большинства стероидов обладают средней полярностью и, как правило, лщюфильны. Вот почему для разделения стероидов в основном применяют адсорбционную хроматографию с растворителями низкой полярности и в гораздо меньших масштабах— гель-проникающую и распределительную хроматографии. Последний из упомянутых факторов (строение стероида) также может сыграть решающую роль при выборе подходящего метода разделения. Например, применение ионообменных смол, по-видимому, целесообразно для разделения способных ионизоваться стероидов, таких, как желчные кислоты или некоторые производные стероидов. Хорошо известно, что соединения, образующие гомологический ряд, плохо делятся на адсорбентах, но хорошо разделимы в системах жидкость—жидкость. В последнем слу- [c.212]

    Созданию современной аналитической хроматографии аминокислот предшествовало два очень важных события — разработка методов получения химически гомогенных белков (школа Норт-ропа, середина 30-х годов [1]) и организация промышленного производства ионообменных смол с последующим развитием ионообменной хроматографии (50-е годы). В промежуточный период были разработаны адсорбционная и распределительная хроматографии аминокислот (на бумаге и на колонках с сорбентами), оказавшиеся, однако, непригодными для решения практических задач. Так колоночная хроматография не нашла применения, главным образом, из-за несовершенства имеющихся в то время сорбентов, в основном природного происхождения. Тем не менее благодаря тщательному подбору условий анализа В. Стейну и С. Муру, лауреатам Нобелевской премии за 1972 г., удалось добиться вполне удовлетворительного разделения смеси аминокислот [2]. Однако этот метод оказался слишком трудоемким и также не нашел широкого применения, поскольку требовалась тщательная стандартизация крахмала, хроматографические свойства которого зависят от источника выделения и метода получения. [c.305]

    Неподвижной может быть как водная, так и органическая фаза (в последнем случае говорят о хроматографии с обращенными фазами ). Возможность осуществления того или inroro варианта в значительной мере определяется наличием подходящих инертных носителей. Для экстракции внутрикомплексных соединений более удобна распределительная хроматография с обращенными фазами, поскольку в этом случае легче изменять состав водной фазы. В качестве носителей для органических фаз используют тефлон (фторопласт-4), спликонированный силикагель и некоторые другие. Водные фазы хорошо удерживаются силикагелем, целлюлозой, синтетическими ионообменными смолами. [c.218]

    Потребовалось выполнить исключительно большую экспериментальную работу по выбору п синтезу сорбентов и изучению условий проведения хроматографических процессов, прежде чем были созданы современные весьма изяш,ные хроматографические методы фракционирования макромолекул. Затруднения, возникшие при разработке этих методов, связаны прежде всего с необратимостью сорбции и малой емкостью сорбции белков. Период поисковых работ включал изучение распределительной хроматографии [1, 4] и молекулярной сорбционной хроматографии, в том числе весьма удачный для своего времени разработанный Тизелиусом метод хроматографии на фосфате кальция [2] и высаливающий хроматографический процесс [3], в котором емкость сорбции белков резко увеличивалась при высоких концентрациях электролита в растворе. Все эти методы, однако, уступили свое место высокоэффективной хроматографии белков на некоторых типах ионообменных смол, на модифицированных целлюлозах и методу гельфильтрации на сефадексах. Имеется значительное число обзоров по хроматографии белков, среди которых наиболее подробными являются статьи Циттла [4] и Мура и Штейна [5]. [c.188]

    Для тонкослойной хроматографии используется большой ассортимент пористых материалов, которые могут выполнять роль сорбентов (адсорбционная, ионообменная хроматография) или пористых твердых носителей для неподвижной жидкой фазы (распределительная хроматография). Основными видами пористых материалов, применяемыми в тонкослойной хроматографии, являются силикагель, окись алюминия, кизельгур, порошкообразная целлюлоза и целлюлозные ионообменники. В меньшей степени используются ионообменные смолы, полиамидные порошки, сефадексы, полиэтиленовый порошок, гидроксилаппатит, силикат магния, сульфат кальция, смеси гидроокиси кальция с силикагелем (6 1 и 4 1), флоризил (смесь силикагеля и магнезии).  [c.285]


Смотреть страницы где упоминается термин Хроматография распределительная на ионообменных смолах: [c.172]    [c.97]    [c.396]    [c.96]    [c.51]    [c.56]   
Методы исследования углеводов (1975) -- [ c.55 , c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Ионообменные смолы

Распределительная. хроматографи

Распределительный щит

Хроматография ионообменная

Хроматография распределительная



© 2025 chem21.info Реклама на сайте