Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография тарелке

    В колонку хроматографа загружается катализатор. На вход колонки подается прямоугольный импульс газа. Находится зависимость высоты теоретической тарелки Н от линейной скорости V газа-носителя  [c.366]

    Успеху капиллярной хроматографии способствовало появление пламенно-ионизационного детектора [68]. Эти высокочувствительные детекторы позволили работать с очень малыми пробами веществ, что способствовало повыщению эффективности капиллярных колонок, снижению высоты, эквивалентной теоретической тарелке до 0,15—0,3 мм. [c.118]


    Вопрос о величине вклада диффузии в высоту тарелки в жидкостной хроматографии был рассмотрен в гл. П. Здесь повторим лишь основные положения. [c.216]

    Эффективность хроматографической колонки выражают числом теоретических тарелок или высотой, эквивалентной теоретической тарелке . Ван Деемтер с сотрудниками предложил для газовой хроматографии следующее уравнение названное его именем  [c.238]

    Наибольшее распространение в неравновесной газовой хроматографии получили теория эквивалентных теоретических тарелок А. Дж. П. Мартина и диффузионно-массообменная теория Дж. Дж. Ван-Деемтера. Последнюю часто называют теорией эффективной диффузии. Обе теории основаны на допущении, что хроматографический процесс протекает в линейной области изотермы адсорбции (в ГАХ) или изотермы распределения (в ГЖХ). Количественной мерой размывания в первом случае является высота Я теоретической тарелки, во втором — эффективный коэффициент диффузии О фф. [c.47]

    В случае газовой хроматографии полагают, что хроматографируемый газ проходит через каждую тарелку периодическими толчками. А за время каждого толчка на каждой тарелке успевает установиться равновесие между газовой и неподвижной фазами для данного компонента разделяемой смеси. С каждой новой порцией газа-носителя, поступающей на первую тарелку, компонент распределяется между подвижной и неподвижной фазами. При следующем толчке на вторую тарелку вместе с газом-носителем поступит меньшее количество компонента, так как часть его остается поглощенной в неподвижной фазе в первой тарелке и частично остается непоглощенной в газе-носителе, вошедшем в первую тарелку. С каждой новой порцией газа-носителя концентрация данного компонента на первых тарелках уменьшается, а на следующих возрастает, потом снова уменьшается, так как свежие порции газа-носи- [c.47]

    Как уже говорилось, с увеличением N эффективность хроматографической колонки возрастает, тогда как с увеличением Н она уменьшается. Достаточная эффективность колонки в аналитической газовой хроматографии наблюдается при N = 1000 ТТ и Я = 0,1 — —0,2 см. Для получения идентичных результатов на газохроматографической и ректификационной колонках необходимо, чтобы N газо-хроматографической колонки было бы на порядок выше, чем в ректификационной. Объясняется это тем, что в газовой хроматографии каждая тарелка работает однократно, а в ректификационной многократно. [c.52]

    Задание. Снять на хроматографе ХЛ-3 или Цвет-1-64 хроматограммы смеси гептан — октан на сорбентах, содержащих различное количество жидкой фазы на носителе. Определить объемы удерживания и коэффициенты Генри для этих веществ. По (III. 19) и (III. 20) определить число теоретических тарелок Ы, а также высоту теоретической тарелки Н для гептана. Вычислить толщину пленки жидкой фазы на носителе по формуле [c.109]


    Пробу можно вводить либо непосредственно в поток газа-носителя, либо в определенный дозируемый объем, из которого она с помощью потока газа-носителя транспортируется в хроматографическую колонку. Объем пробы зависит от чувствительности детектора. Для аналитических целей он колеблется в пределах 0,01 —10 мкл. Для препаративных целен, т. е. при использовании газовой хроматографии для получения индивидуальных веществ в чистом виде, объем пробы зависит от размеров колонки и составляет от 0,1 г до килограммов, как об этом сообщается в литературе. Идеальным случаем считается тот, когда вся проба из дозатора, попадая в хроматографическую колонку, умещается иа первой теоретической тарелке (см. гл. IV), не размываясь по всей колонке. Средняя высота тарелки (0,2—0,03 см) в колонках, имеющих диаметр 2,5—0,025 см, соответствует объему тарелки [c.39]

    Эффективность разделения в газовой хроматографии зависит от скорости миграции молекул исследуемого соединения через колонку и от распределения компонента между неподвижной и подвижной фазами, т. е. от наклона изотермы или константы распределения. Количественным выражением первого явления служит время удерживания (время элюирования) tr или удерживаемый объем Уг, второго явления — число теоретических тарелок N (безразмерная величина) или высота, эквивалентная теоретической тарелке, Н, мм. Кроме того, большое внимание уделяется изучению факторов и явлений, непосредственно воздействующих на [c.226]

    Ф. Гельферих показал что заимствованное из теории дистилляции понятие эффективной теоретической тарелки ( 2) можно использовать для расчетов разделения при ионном обмене на колонках. Для элюентной хроматографии малых количеств веществ и при предположении прямолинейности изотермы ионного обмена им выведены следующие уравнения, позволяющие рассчитать форму выходной кривой  [c.181]

    Малая высота тарелки и, следовательно, высокая эффективность связаны с малыми путями диффузии к сорбенту. Особо высокая эффективность осуществляется в так называемой капиллярной хроматографии. В качестве колонки используется капилляр, на стенке которого тонким слоем нанесена неподвижная фаза. Число тарелок в таких колонках доведено до миллиона. В результате удается анализировать смеси, содержащие сотни компонентов, что особенно важно для анализа природных смесей (наиример, бензинов) и для решения медико-биологических проблем. [c.406]

    Принятые обычно схемы автоматизации ректификационной колонны предусматривают управление чистотой разделения (составом целевых продуктов) по косвенному параметру — температуре контрольной тарелки [31]. Последнее объясняется тем, что приборы качества (рефрактометры, масс-спектрометры, хроматографы и т. д.) в настоящее время применяются ограни- [c.192]

    Из уравнения (6) гл. II для высоты теоретической тарелки П при изотермической хроматографии следует [c.417]

    Скорость газа-носителя как и при изотермической хроматографии, выбирается таким образом, чтобы высота теоретической тарелки Н была минимальной. Ограниченное изменение щ не оказывает заметного влияния на разделение, если в уравнении (14) этой величиной можно пренебречь по сравнению с величиной и . При этом условии в соответствии с уравнениями (4) и (2) возникают лишь незначительные изменения величин и Тс- При увеличении щ продолжительность анализа существенно сокращается. [c.419]

    Из других керамических изделий в лабораториях органической химии используют изделия из глины пористой структуры. Пористые тарелки применяют для отделения плохо фильтрующихся осадков кашеобразной консистенции от остатков маточного раствора. В настоящее время с той же целью используют неглазурованные плитки из пористого фаянса размером 15 X 15 X 0,5 сл, с которых легко снимаются отфильтрованные кристаллы. Размолотый и просеянный фаянс служит хорошим носителем для газожидкостной хроматографии [8]. Мелкие осколки пористой тарелки или плитки диаметром 2—4 мм применяют в качестве кипятильников для предотвращения взрывного кипения. При электролизе для отделения анодного пространства от катодного используют пористые диафрагмы, как правило, цилиндрической формы. [c.31]

    Первый способ — способ теоретических тарелок [89, 184, 185], согласно которому хроматографию рассматривают как прерывный многоступенчатый процесс. Теоретическая тарелка определяется как такая длина [c.488]

    Основными причинами расширения хроматографических зон являются турбулентная диффузия, зависящая от качества наполнения колонки, молекулярная диффузия и сопротивление массообмену. С учетом этих факторов было выведено основное уравнение для высоты, эквивалентной теоретической тарелке при хроматографии в системе газ — жидкость  [c.489]


    Как можно заключить из рис. 5.1-4, минимум для высоты теоретической тарелки в жидкостной хроматографии (ЖХ) находится при более низких скоростях потока, чем в газовой хроматографии (ГХ). Следует отметить, что этот [c.238]

    Пройденное расстояние также может быть использовано для расчета числа теоретических тарелок и высоты тарелки. Для тонкослойной хроматографии они рассчитываются следующим образом  [c.296]

    Кроме того, можно вывести уравнение зависимости максимальной нагрузки капиллярной колонки от диаметра капилляра. В капиллярной хроматографии минимальная высота теоретической тарелки согласно Сьенитцеру пропорциональна диаметру капилляра Н = = айц (где а — коэффициент пропорциональности, — диаметр капилляра). Для хорошо растворяющихся веществ а = 0,95, для воздуха а = 0,3. [c.77]

    Метод определения коэффициента молекулярной диффузии в газовой фазе на основе измерения высоты теоретической тарелки незаполненной сорбентом колонки при различных скоростях газа-носителя разработали Жуховицкий и Туркельтауб. Этому же вопросу посвящена работа Кнокса и Мак-Ларена и других авторов. Этим не ограничивается перечень физико-химических величин и свойств, которые могут быть измерены и изучены методами газовой хроматографии. Для всех этих величин и свойств характерно то, что они вытекают из единой первоначальной величины, а именно из объема удерживания. Таким образом, качественная природа вещества связана с его физико-химическими свойствами через объем удерживания. [c.188]

    Размывание хроматографической полосы и его физические причины. Главные направления в развитии теории неравновесной хроматографии теория тарелок и теория эффективной диффузии. Различие между этими теориями. Форма выходной кривой в неравновесной хроматографии при идеальной изотерме. Теория тарелок. Понятие об эффективности хроматографической колонки с точки зрения теории тарелок. Уравнение материального баланса и уравнение хроматографической кривай в теории тарелок. [Иирина хроматографического пика на разных его высотах. Высота, эквивалентная теоретической тарелке (ВЭТТ). Способы определения числа теоретических тарелок. [c.296]

    В хроматографии функциями отклика являются высота теоретической тарелки Н, общий критерий разделения К или Кв, время t, затрачиваемое на разделение (обычно это г —время удерживания наиболее сильно сорбирующегося компонента). [c.149]

    Отскуда следует, что разрешение колонны падает при уменьшении термодинамических факторов — селек ивности и емкости колонны (при наименьших значениях а=1 и к-=0, к = 0), г также при уменьшении числа теоретических тарелок, т. е. при уменьшении эффективности колонны. Для достижения / =1 или =1,5 (касание или полное раздвижение пиков к и 1 на рис. 7.6) при малой селективности адсорбента по отношению к компонентам к и 1, например при а= 1,0 1, требуется резкое сужение пиков и уменьшение высоты, эквивалентной теоретической тарелке, Н=ЦМ (где — длина колонны). В газовой хроматографии на наполненных адсорбентом колоннах при низкой селективности а величина Н не должна превышать 0,4 мм. Это достигается применением капиллярных колонн внутренним диаметром около 1 мм и меньше, заполненных узкой фракцией гранул адсорбента размером около 0,1 мм (см. рис. 1.7).  [c.140]

    Вязкость обычных жидкостей много больше вязкости газов, поэтому в жидкостной хроматографии процессы внешней (между зернами адсорбента) и внутренней (в их порах) диффузии играют особенно важную роль, приводя к сильному размыванию пиков. Это влечет за собой, как известно, уменьшение числа теоретических тарелок N и соответствующий рост Я — высоты, эквивалентной теоретической тарелке, т. е. к падению эффективности хроматографической колонны. В результате часто оказывается невозможным реализовать селективность, присущую данной системе адсорбент — дозируемые вещества — элюент, которая определяется прйродой этой системы. Эти проблемы имеют место и в газовой хроматографии, однако, как было показано ранее, в газовой хроматографии, как правило, можно пренебречь конкурирующей адсорбцией элюента, снижающей адсорбцию дозируемых веществ. Поэтому в газовой хроматографии можно использовать непористые или широкопористые адсорбенты со сравнительно малой удельной поверхностью. Поверхность таких адсорбентов обычно более однородна и доступна. В жидкостной же хроматографии не очень больших молекул приходится применять адсорбенты с гораздо более высокой удельной поверхностью, а следовательно, более [c.283]

    Одна из главных задач теории неравновесной хроматографии — изучение причин размывания хроматографических полос. Это явление может быть обусловлено диффузионными и кинетическими факторами. Их влияние на процесс разделения может быть настолько велико, что даже при значительной разнице коэффициентов распределения вещества могут не разделиться. Явление размывания полос в реальной хроматографической колонке очень сложно и может быть описано лишь приближенно на основе теорий, устанавливающих зависимость между мерой размывания и указанными факторами. Для описания неравновесной ГХ чаще всего используются теория теоретических тарелок и теория эффективной диффузии. Обе теории основаны на допущении о том, что хроматографический процесс протекает в линейной области изотермы распределения (п ГЖХ) или изотермы адсорбции (в ГАХ), Количественной мерой размывания в первом случае является высота теоретической тарелки Н, во втором — эффективный коэффициент диффузии Дэфф. [c.334]

    Между п и высотой теоретической тарелки Н пмеется простая связь L = Нп, где L — длина колонки. Ввиду того что коэффициент распределения и коэффициент диффузии вещества, распределяющегося в неподвижной фазе и газе-носителе, завпсят от температуры п связаны в соответствии с уравнением вап Деемтера с Н, уравнение (19) нельзя непосредственно применять для определения Н пли п в условиях программирования температуры. С повышением температуры Н возрастает, а следовательно, падает эффективность во всех областях, за исключением области очень низких температур, где вследствие экстремально малых значений коэффициентов диффузии в жидкой фазе член С уравнения ван Деемтера может стать определяющим для величины Н. Таким образом, в случае хроматографии с программированием температуры высота теоретической тарелки является сложной функцией температуры, а следовательно, и времени. Однако для компонента, проходящего через колонку, можно предположить некоторую среднюю высоту теоретической тарелки. Ввиду того что зона вещества проходит через всю колонку при температурах, близких к температуре удерживания Тг, величина этой средней высоты теоретической тарелки близка к получаемой в изотермических условиях при температуре удерживания. Исходя из этих соображений, Хэбгуд и Харрис (1960) привели ирпб.тшженное уравнение для числа теоретических тарелок [c.403]

    При 1 пики двух в-в на хроматограмме разделяются практически полностью, с ростом увеличивается время разделения, при < 1 - разде тение неудовлетворительное В препаративной хроматографии в связи с введением сравнительно больших ко т-в разделяемых в-в колонка работает с перегрузкой При этом снижается коэф емкости, возрастает высота эхвнвалентная теоретич тарелке, что приводит к уменьшению разрешения [c.153]

    Для описания этих явлений следует изучить зависимость высоты тарелки от линейной скорости потока или проще линейной скорости й (см/с). Рис. 5.1-4 иллюстрирует эти зависимости для жидкостной и газовой хроматографии. Важные независимые переменные для описания эффективности ко-Ж1нки описаны в табл. 5.1-2. [c.238]

    Из динамической теории хроматографии можно еделать вывод, что высота тарелки непосредственно связана с размером частиц сорбента через коэффициент массопереноса См (табл. 5.1-3). Следовательно, уменьшение размера частиц снижает высоту тарелки и повышает эффективность разделении колонки. [c.265]


Смотреть страницы где упоминается термин Хроматография тарелке: [c.351]    [c.531]    [c.74]    [c.235]    [c.297]    [c.286]    [c.24]    [c.340]    [c.37]    [c.338]    [c.446]    [c.446]    [c.17]    [c.301]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.5 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.5 ]




ПОИСК





Смотрите так же термины и статьи:

ВЭТТ высота, эквивалентная теоретической тарелке при хроматографии с программированным нагревом

Высота, эквивалентная теоретической тарелке ВЭТТ в ситовой хроматографии

Высота, эквивалентная теоретической тарелке в тонкослойной хроматографии

Основы концепции теоретических тарелок в хроматографии

Рекомендации по практическому применению метода элютивной ионообменной хроматографии для разделения смесей, вытекающие из теории тарелок

Теоретические тарелки тонкослойная хроматография

Теория тарелок в элютивной ионообменной хроматографии

Тонкослойная хроматография число теоретических тарелок

Хроматография газовая тарелки

Хроматография газовая теория тарелок

Хроматография концепция теоретических тарелок

Хроматография теоретические тарелки

Хроматография число теоретических тарелок



© 2025 chem21.info Реклама на сайте