Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр ферментов пепсина

    Активация некоторых ферментов может осуществляться путем модификации их молекулы и не затрагивать активный центр фермента. Так, H I активирует пепсиноген желудочного сока, переводя его из неактивной формы в активную (пепсин). Панкреатическая липаза активируется желчными кислотами. [c.102]

    Известно несколько различных семейств протеиназ, причем не все они обязательно содержат в активном центре серин. В одно из семейств входит пепсин желудка и родственные ферменты, например реннин из четвертого желудка (сычуга) теленка. Реннин вызывает быстрое свертывание молока и широко применяется в сыроварении. К этому же семейству относятся некоторые внутриклеточные катепсины и протеиназы различных грибов. Необычным свойством пепсинового семейства протеиназ является то, что они наиболее активны в интервале pH от 1 до 5. Это свойство делает понятным, почему серин и гистидин не входят в состав активного центра этих ферментов. Считают, что у кислых протеиназ в механизме двойного замещения роль нуклеофила выполняет карбоксилат-ион, а донором протона по отношению к уходящей группе служит вторая карбоксильная группа. Таким образом, механизм действия пепсина подобен механизму действия лизоцима. [c.113]


    Пепсин, трипсин и химотрипсин выделяются железистыми клетками в виде неактивных проферментов—зимогенов пепсиногена, трипсиногена и химотрипсиногена, так как их активные центры блокированы фрагментами полипептидной цепи, после гидролитического отщепления которых фермент приобретает активность. Это явление впервые было открыто в лаборатории И. П. Павлова. [c.131]

    Аналогично метиловый зфир N-дивзoaцeтилфeиилaлaнииa избирательно взаимодействует с оствтком аспарагиновой кислоты (А р-215) в активном центре пепсина, что приводит к полной инактивации фермента. [c.172]

    В некоторых ферментах, например в тех, которые катализируют гидролитическое разложение белков (пепсин в желудочном соке), активный центр не содержит инородных соединений, а представляет собой просто совокупность отдельных частей длинной цепеобразной молекулы белка, сближенных друг с другом в результате изгиба сложной цепи. Следовательно, активный центр фермента может возникнуть как результат определенной деформации белковой частицы другими словами, геометрические особенности полипептидной цепочки, из которой белки и состоят, имеют больщое значение для проявления каталитических свойств (см. III, гл. 5). [c.356]

    Пока не начнется секреция желудочного сока, пепсин (протеолитический фермент желудочного сока) находится в неактивной форме, называемой пепсиногеном. Его превращение в активную форму, т. е. в пепсин, происходит под влиянием кислоты, попадающей в желудок из секреторных клеток. Полагают, что превращение происходит в результате незначительного расщепления белковой молекулы пепсиногена. Возможно, что при этом обнажается активный центр, который до этого находился внутри молекулы. [c.366]

    Зависимость скорости реакции от pH. Изменение pH приводит к изменению степени ионизации ионогенных групп в активном центре, а это влияет на сродство субстрата к активному центру и на каталитический механизм. Кроме того, изменение ионизации белка (не только в области активного центра) вызывает конформационные изменения молекулы фермента. Колоколообразная форма кривой (рис. 2.17, д) означает, что существует некоторое оптимальное состояние ионизации фермента, обеспечивающее наилучшее соединение с субстратом и катализ реакции. Оптимум pH для большинства ферментов лежит в пределах от 6 до 8. Однако есть и исключения например, пепсин наиболее активен при pH 2. Количественное определение ферментов проводят при оптимальном для данного фермента pH. [c.85]


    Профиль рН-зависимости кинетических параметров гидролиза М-ацетил-Ь-фенилаланил-Ь-триптофана, катализируемого пепсином, имеет колоколообразную форму, причем левая ветвь рН-зависимости обусловлена протонированием карбоксильной группы активного центра фермента, а правая —депротонированием карбоксильной группы субстрата [12]. На основании данных табл. 21 [c.236]

    Реакция гидролиза К-трифторацетил-Ь-фенилаланина, катализируемая пепсином, происходит только в том случае, если карбоксильная группа активного центра фермента является протонированной, а карбоксильная группа субстрата — депротонирован-ной [14]. Исходя из данных рН-зависимости ферментативной реакции (табл. 22), вычислить значения рК ионогенных групп субстрата и фермента, принимающих участие в реакции. [c.237]

    ПЕПСИН, фермент класса гидролаз, катализирующий гидролиз белков и пептидов. Мол. масса П, свиньи ок. 35 тыс. (фермент выделен в кристаллич. состоянии) молекула состоит из полипептидной цепи, содержащей 327 аминокислотных остатков, и одного остатка фосфорной к-ты, образующего фосфоJфиpнyю связь с гидроксильной группой остатка серина в положении 68 (отщепление фосфатной группы ие сказывается на ферментативных св-вах пепсина). Размеры молекулы 5,5-4,5-3,2 нм она состоит из двух частей (доменов), между к-рыми находится область активного центра фермента, включающая два каталитически важных остатка аспарагиновой к-ты (в положениях 32 и 215). [c.465]

    Активаторы ферментов — это вещества 1) формирующие активный центр фермента (Со " ", 2п2+, Ре " ", Са ) 2) облегчающие образование фермент-субстратного комплекса (Mg2+) 3) восстанавливающие ЗН-фуппы (глутатион, цистеин, меркаптоэтанол) 4) стабилизирующие нативную структуру белка-фермента. Активируют ферментативные реакции обычно катионы металлов (в таблице Менделеева с 19-го по 30-й). Анионы менее активны, хотя ионы хлора и анионы некоторых других галогенов могут активировать пепсин, амилазу, аденилатциклазу. Активаторами могут быть белки апо-А1 (ЛХАТ), апо-СП (ЛПЛ). [c.73]

    Если значения соединений IV коррелируют с гидрофобностью грзгапы Н (1 Д =-0,73711-1,8), то для ингибиторов типа V наблюдается корреляция не с гидрофобностью, а со стерическими эффектами этой группы (18К = 0,88Е -3,086). По-видимому, эти соединения, отличающиеся лишь заменой группы на о- атом, по-разному связываются в активном центре фермента. Замена Ш-группы в Р -остатке субстратов пепсина на атом кислорода [1990] или замена С0-1РУШШ на СН -группу в -остатке таких субстратов [26041 превращает их в кошсурент ные шгибиторы ферментов, причем значения оказывается весьма близкими значениям К.  [c.246]

    Но, конечно, нет правил без исключений. В природе встречаются белки, вообще не содержащие некоторых из приведенных на рис. 13 аминокислотных остатков, например цистеина. В пепсине, протеолитическом ферменте с молекулярной массой около 35 ООО имеются не два десятка, как этого можно было бы ожидать, а всего лишь две аминогруппы одна в-лизина и одна Л -концевая. Но недостаток одних групп на поверхности белковой молекулы компенсируется другими. В общем, количество функциональных групп в белках, доступных модифицирующим агентам, достаточно велико и, казалось бы, нет особых проблем для ковалентной иммобилизации белковой молекулы с использованием хотя бы одной из этих групп. Тем не менее проблемы существуют и не малые. Дело в том, что в процессе ковалентной иммобилизации должны участвовать только те группы молекулы белка, которые не существенны для его функции (в нашем случае — катализа). С этой позиции попытаемся выявить в белке группы-мишени, наиболее предпочтительные для целей ковалентной иммобилизации. Для этого используем следующие критерии. Во-первых, группы-мишени должны быть высокореакциоиноспо-собными, чтобы по возможности обеспечить избирательность реакции модификации, а также ее протекание в мягких неденатурирующих условиях. Во-вторых, таких групп в белке должно быть достаточно много, чтобы обеспечить широкие возможности для введения новых химических связей в белковую молекулу с регуляцией их числа и локализации и снизить таким образом вероятность модификации активных центров ферментов. Данные о сравнительной реакционной способности и относительному содержанию аминокислотных остатков приведены на рис. 13.. [c.84]

    Пример 2.13 [1]. Реакция гидролиза Ы-трифтроацетил-Ь-фенилаланина катализируется пепсином. Известно, что гидролиз происходит только в том случае, когда активный центр фермента протеонизирован, а субстрат находится в депротеонизированном состоянии. На основании данных табл. 2.16 определить рК ионогенных групп субстрата и фермента. [c.195]

    Предшественники (зимогены) — пепсиноген, трипсиноген и химо-трипсиноген получены в чистом виде. Активация заключается в удалении небольшого пептидного фрагмента и катализируется либо активной формой самого фермента, либо энтерокиназой, другим ферментом, имеющимся в пищеварительном тракте. При превращении трипсиноге-на в трипсин с N-конца белка отщепляются гексапептид вал— (асп)4 — лиз и N-концевой аминокислотой становится изолейцин (Нейрат , 1955). Активация других зимогенов более сложна. Ранние работы Бергмаина (1937) на простейших модельных пептидах показали, что ферменты избирательно расщепляют определенно пептидные связи. Пепсин, трипсин и химотрипсин известны как эндопептидазы, так как они расщепляют пептидные связи, расположенные внутри молекулы. Пепсин расщепляет амидные связи, образованные аминогруппами фенилаланина или тирозина химотрипсин расщепляет связи, образованные карбоксильными группами этих ароматических аминокислот. Трипсин расщепляет амидные связи, образованные карбоксильными группами основных аминокислот (лиз, арг). Эти протеолитические ферменты расщепляют также эфиры аналогичной структуры. Во всех случаях затрагиваются только пептиды, образованные -аминокислотами. Предположение Михаэлиса (1913), что реакции, катализируемые ферментами, проходят через стадию образования промежуточного фермент-субстратного комплекса, были подтверждены всеми последующими работами. С большой очевидностью показано, что каталитическая активность определяется небольшим участком фермента, так называемым его активным центром. [c.697]


    В таблице 17 приведена рН-зависимость гидролиза амида К-ацетил-Ь-фенилаланил-1-тирозина, катализируемого пепсином [12]. Определить значения рК групп активного центра свободной формы фермента, принимающих участие в реакции. [c.234]

    ПЕПСИН, фермент класса гидролаз. Мол. масса П., выделенного из желудка свиньи, ок, 35 ООО, р1 2,08 (для де-фосфорилиров. белка), оптим. каталитич. активность прн pH ок. 2,5—3. Активный центр включает карбоксильные группы, к-рые специфически реаг. с ингибиторами, содержащими зпокси- или диазогруппу. Ингибируется пепстати-ном, образуется в желудке позвоночных из предшественника (пепсиногена) отщеплением N-концегвого 42-членного пептида. Катализирует гидролиз белков и пептидов, участвует в процессах пищеварения. Специфичен к пептидным связям, образованным хотя бы одной гидрофобной аминокислотой, расщепляет также депсипептиды. Входит в состав лек. ср-в, применяется в сыроделии, а также для определения первичной структуры белков. [c.428]

    ХИМОЗИН (реннин, сычужный фермент), фермент класса гидролаз, относится к эндопентидазам. Мол. масса бычьего X. 35 600, р1 4,6, оптим. каталитич. активность нри pH 3,5—4,0. Образуется в слизистой желудка телят из предшественника (нрохимозина) отщеплением 42 членного пептида с N-конца. По строению активного центра относится к ферментам тина пепсина. Катализирует гидролиз белков и пептидов по связям, образованными нреим. гидрофобными аминокислотами. Ингибируется пепстатином и ингибиторами, содержащими диазо- или эпоксигругигу. Использ. в сыроделии. [c.653]

    Г.-белки с мол. м. от 10-15 тыс. до 200-300 тыс. Они проявляют свою каталитич. активность, как правило, в отсутствие к.-л. кофакторов лишь в нек-рых случаях необходимы ионы металлов-гл. обр. Zn " , Со " , Са , Mg " . Для небольшого числа Г. известна первичная, а для нек-рых и пространств, структура молекулы (напр., для лизоци-ма, пепсина, трипсина, химотрипсина). Отмечено значит, сходство структуры ферментов одного подкласса, особенно в области активного центра. Так, мн. протеиназы имеют в активном центре одинаковую последовательность аминокислот Gly Asp Ser Gly Gly Pro (обозначения см. в ст. Аминокислоты]. Близкое строение имеет и активный центр ряда эстераз. [c.561]

    Для образующегося вначале тетраздрического интерхмедиата (48) возможен только распад на исходные соединения. Однако после переноса протона (48)-)-(49) может проходить элиминирование RNH2. Этот перенос протона не может идти непосредственно (участвующие группы чрезмерно сближены), и требуется общий кислотный катализ [76). В случае фермента, естественно, можно полагать, что в качестве требуемого общего кислотного катализатора будет выступать одна из находящихся в активном центре карбоксильных групп. Введение карбоксильной группы возможно и в модельное соединение. Для гидролиза (51), полученного в результате такого введения, уже не требуется межмолекулярного катализа. Очень быстрый гидролиз (51) катализируется его собственными двумя карбоксильными группами, действующими на отдельных стадиях реакции. Одна из них должна находиться в форме кислоты вторая, катализирующая, по-еидимо-му, стадию переноса протона [соответствующую (48)- -(49) на схеме (39)1, действует в форме группы СОг , предположительно в качестве общего основного катализатора. В результате гидролиз (51) показывает колоколообразный профиль зависимости от pH [77), качественно близкий наблюдаемому при гидролизе пепсином. [c.501]

    Проферменты. Протеолитические ферменты пищеварительного тракта, а также поджелудочной железы синтезируются в неактивной форме—в виде проферментов (зимогенов). Регуляция в этих случаях сводится к превращению проферментов в активные ферменты под влиянием специфических агентов или других ферментов—протеиназ. Так, трипсин в поджелудочной железе синтезируется в форме неактивного трипсиногена. Поступив в кишечник, он превращается в активный трипсин в результате аутокатализа или под действием других протеиназ (механизм активации подробно рассматривается в главе 12). Превращение неактивного пепсиногена в активный пепсин происходит аутокаталитически в результате специфического ограниченного протеолиза в присутствии соляной кислоты и также связано с отщеплением от профермента специфического ингибитора пептидной природы. Эти превращения зимогенов в активные ферменты связаны с конформационными изменениями молекулы фермента и формированием активного центра или его раскрытием (демаскирование). Синтез протеиназ в неактивной форме и ряда других неактивных белков-пред-шественников имеет, очевидно, определенный биологический смысл, предотвращая разрушение клеток органов, в которых образуются проферменты. Примерами подобного активирования белков является активиро- [c.153]

    Далее было выяснено влияние гидрофобного связывания углеводородов ферментами (пепсин и химо-трипсин) на биологическую (протеологическую) активность. Показано, что солюбилизация бензола приводит к значительному снижению протеолитической активности пепсина. После солюбилизации активность его падает со 100 до 40—70% (метод определения активности по Метту). Предполагаемый механизм торможения протеолитической активности пепсина заключается в том, что бензол, взаимодействуя с неполярными группами пепсина, экранируют его активный центр. [c.396]

    Защита главных клеток от переваривания пепсином. Для того чтобы предшественник пепсина пепсиноген превратился в активный фермент, от его №конца должен отщепиться фрагмент, содержащий 42 аминокислотньк остатка. Процесс активации катализируется обычно самим пепсином, хотя при pH ниже 5 пепсиноген обладает слабой каталитической активностью. Кроме того, отщепляемый при активации фрагмент при pH выше 2 прочно связывается с активным центром пепсина, а при pH ниже 2-слабо. [c.776]

    Полипептидная цепь пепсина связана на определенных участках тремя дисульфидными связями, играющими, по-видимому, важную роль в поддержании необходимой конформации фермента Аналогичную роль, вероятно, выполняет остаток фосфорной кислоты. Предполагают, что в активном центре пепсина имеется остаток аспарагиновой или глутаминовой кислоты в непосредственной близости к остатку тирозина. [c.304]

    Известно, что активность почти всех ферментов чувствительна к денатурации, т. е. к изменению третичной структуры. Следовательно, для сохранения ферментативной функции должна остаться неповрежденной значительно большая часть молекулы по сравнению с той, которая находится в непосредственном контакте с субстратом. В простых ферментах (пепсине, трипсине, химо-тр. шсине, уреазе, папаине и др.) активный центр образуется определенной группировкой аминокислотных остатков в спиральной цепи белковой молекулы. В сложных ферментах, состоящих из белка и небелкового компонента, в состав которого входят, например, нуклеопгды, гемины, атомы металлов и др., активный центр образуется главным образом небелковым компонентом и некоторыми прилегающими к нему аминокислотными остатка.ми. [c.138]

    В клетках слизистой оболочки желудка продуцируется пепсиноген — профермент пепсина, полипептидная цепь которого, содержащая 340 аминокислотных остатков и имеющая молекулярную массу около 40 ООО, обладает высокой устойчивостью в сильнокислой среде и характеризуется низким значением изоэлектрической точки (р/< 1). В желудочном соке от пепсиногена отщепляется Н-концевая часть молекулы, содержащая 42 аминокислотных остатка, в результате чего в остальной части молекулы вследствие конформационных перестроек формируется активный центр пепсина. Таким образом из профермента вырабатывается фермент — пепсин. Ахтивация пепсиногена в пепсин может происходить как под действием соляной кислоты желудочного сока, так и под действием самого пепсина, т. е. автокаталитически. Причем реакция с участием соляной кислоты протекает довольно медленно, в то время как автокаталитический процесс имеет высокую скорость. Поэтому небольшое количество пепсина, медленно образующееся в результате действия соляной кис- р с. П.З. Микрофотография кри-лоты на пепсиноген, в дальнейшем служит сталлов пепсина [c.375]

    Пепсин, мол. вес которого равен 34 644, состоит из единственной полипептидной цепи, содержащей 327 аминокислотных остатков [137, 138]. Ser-68 фосфорилирован, однако удаление фосфата не приводит к существенным изменениям каталитических СВОЙСТВ фермента [139]. Как и у других кислых протеаз, активный центр пепсина занимает обширную область, в которую может поместиться по крайней мере четыре-пять, а возможно, и до семи остатков молекулы субстрата [140, 141]. Наиболее благоприятной для функционирования пепсина является такая ситуация, когда по обе стороны от расщепляемой связи находятся гидрофобные аминокислоты. Статистический анализ процесса расщепления связей в белках показывает, что подцентр Si специфичен к лейцину, фенилаланину, триптофану и глутама-ту ( ), а подцентр Si— к триптофану, тирозину, изолейцину и фенилаланину [141]. Пепсин, как правило, не гидролизует эфиры исключение составляют эфиры L-p-фенилмолочной кислоты и некоторые эфиры сернистой кислоты. [c.383]

    Первые опыты подобного рода были проделаны в нашей лаборатории на двух ферментах — трипсине и альдолазе. Фрагменты этих белков с молекулярным весом 2500—3000, т. е. составлявшие не более чем 10% всей макромолекулы белка, оказались ферментативно активными. Далее Перлман показала, что ферментативная активность сохраняется в осколках пепсина, проходящих через диализациопную мембрану, а Смит обнаружил, что деградация фермента паиаина, вплоть до отщепления с помощью фермента амииопептидазы 122 аминокислотных остатков из 187 от его полипептидной цепи с К-конца, дает продукт с полной каталитической активностью. Следовательно, для осуществления акта ферментативного катализа вся макромолекула не нужна. Достаточна относительно небольшая область белка — полипептид, состоящий из 20—30 аминокислотных остатков. Важно, однако, сохранение вторичной и третичной структуры вблизи ферментативного центра. Это проявлялось весьма ярко при разрыве дисульфидного мостика в каталитически активном фрагменте трипсина. Восстановление [c.141]


Смотреть страницы где упоминается термин Активный центр ферментов пепсина: [c.505]    [c.196]    [c.505]    [c.167]    [c.92]    [c.81]    [c.264]    [c.142]    [c.713]    [c.653]    [c.97]    [c.121]    [c.88]    [c.245]    [c.80]    [c.91]    [c.297]    [c.308]    [c.166]   
Химия биологически активных природных соединений (1970) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активность фермента

Активные ферментов

Активные центры ферменто

Активный центр

Пепсин



© 2025 chem21.info Реклама на сайте