Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рецепторная специфичность

    Вирусный белок антигенен и реагирует с антителами. Он обеспечивает рецепторную специфичность и адсорбцию вирусной частицы на восприимчивой клетке и защищает нуклеиновую кислоту от внешних воздействий. [c.109]

    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]


    Фесенко и сотрудники исследовали мембраны клеток обонятельного эпителия и установили в них присутствие структур, обладающих высоким сродством к камфоре (лягушка, крыса) и к некоторым аминокислотам (скат). Специфичность взаимодействия с пахучим веществом, высокая константа связывания н отсутствие таких структур в других клетках указывают на наличие обонятельных рецепторных молекул. Обонятельный рецептор для камфоры — белок с м. м. около 125 ООО. [c.356]

    Пока нет еще четкой концепции о роли сфинголипидов, на имеется ряд наблюдений и высказано несколько интересных догадок [13]. Как уже отмечалось, сфинголипиды связаны с адгезией клеток, их распознаванием, иммунологической специфичностью, синаптической передачей и рецепторными свойствами клеточных поверхностей. Ниже мы обсудим некоторые-данные, которые могут быть использованы при создании моде ли функционирования ганглиозидов. [c.51]

    Особое значение имеет специфическая функция углеводов — участие в образовании гибридных (комплексных) молекул, а именно гликопротеинов и гликолипидов. Так, гликопротеины служат маркерами в процессах узнавания молекулами и клетками друг друга, определяют антигенную специфичность, обусловливают различия групп крови, выполняют рецепторную, каталитическую и другие функции. [c.223]

    Специфичные ядерные рецепторы эстроген-рецепторных комплексов [c.353]

    Существует много различных разновидностей вируса гриппа. Какую именно ткань будет поражать вирус, зависит от специфичности вируса по отношению к клеткам-хозяевам и от рецепторных свойств клеток. Вирус может вызвать нарушение клеточного метаболизма или даже гибель клетки. Кроме того, он действует как антиген и стимулирует образование антител в организме хозяина. Вирусы, ответственные за большие эпиде и гриппа, отличаются друг от друга по своей вирулентности и патогенности. [c.140]

    Бактериофаги, как правило, проявляют специфичность в отношении хозяев они инфицируют только один штамм бактерий или ограниченное число родственных штаммов, видов или родов бактерий. В основе этой специфичности лежат прежде всего рецепторные свойства поверхности бактериальных клеток (разд. 4,2.1). [c.468]

    Молекулярные механизмы действия фитогормонов. Практическое использование фитогормонов основано на глубоком знании молекулярных механизмов их действия, изучению которых в связи с этим придается большое значение. В настоящее время выявлена общая принципиальная схема образования фитогормонов, реализации их регуляторного действия, включающая биосинтез предшественников, связывание со специфичным к данному гормону белковым рецептором с образованием активированного гормон-рецепторного комплекса, воздействие этого комплекса на геном растения и (или) на активность определенных ферментативных систем. [c.332]


    Существует принципиальная разница между связыванием гормонов с рецепторами и их ассоциацией с различными транспортными белками (переносчиками). Соответствующее сопоставление сделано в табл. 43.1. Количество молекул рецептора, участвующих в связывании лиганда, составляет несколько тысяч на клетку, а само связывание характеризуется высокой аффинностью и специфичностью. Рецепторы способны к узнаванию и селекции специфических соединений в условиях градиента концентраций 10 —10 при физиологических концентрациях гормона это связывание с рецепторами насыщаемо. Гормон-рецепторное взаимодействие зависит от температуры, pH и концентраций солей характерным для каждого гормона образом. Связывание определяется гидрофобным и электростатическим механизмами и потому легко обратимо, за исключением некоторых особых случаев. [c.152]

    Схема механизма действия глюкокортикоидных гормонов описана в гл. 44 и изображена на рис. 44.1. Многочисленные примеры подтверждают концепцию о том, что эти гормоны влияют на специфические внутриклеточные процессы путем изменения содержания в клетке критически важных белков, как правило, ферментов. Последнее определяется тем, что глюкокортикоиды способны регулировать в клетках-мишенях скорость транскрипции специфических генов. Для этого требуется, чтобы стероид-рецепторный комплекс связался со специфическими областями ДНК вблизи сайта инициации транскрипции и далее чтобы эти области определили специфичность ответа. Каким именно образом это связывание стимулирует или тормозит транскрипцию, как обеспечивается тканевая специфичность, почему один и тот же ген может быть активирован в одной ткани и ингибирован в другой,—эти и многие другие принципиальные вопросы остаются открытыми. [c.217]

    Мы можем теперь обобщить наш обзор процессов, происходящих на рецепторном уровне (см. табл. 11.2). В передаче информации из области сенсорного стимула в область импульсного разряда мы видели четыре стадии (преобразование, генерацию рецепторного потенциала, его электротоническое распространение, генерацию импульса). Мы видели также, как. рецептор определяет основные свойства сенсорного ответа. Таким образом, специфичность сосредоточена в молекулярных механизмах чувствительной мембраны. Кодирование интенсивности связано с преобразованием градуальных рецепторных, потенциалов в частотный импульсный код. Адаптация определяет профиль ответа в зависимости от временной размерности часто имеется тенденция повышения чувствительности к изменению стимула. Распределение всей популяции рецепторов определяет, как мы вскоре покажем, пространственную организацию поступающей информации. [c.275]

    Если проблему высокоспецифического транспорта ФАВ в клетки-мишени удастся решить хотя бы на нескольких практически важных примерах, то откроется путь к принципиально новому подходу к созданию лекарственных средств. Существующие лекарственные средства специфичны по отношению к определенным рецепторам (этим обусловлено их полезное действие), но распределяются в организме в соответствии с их физико-химическими свойствами. Замена рецепторной специфичности высокой специфичностью к определенным органам позволит резко снизить требования к разнообразию лекарств и откроет пути к лекарственной терапии, отличной от терапии, применяемой сегодня [30]. Переход к ФАП позволяет сделать важные шаги в этом направлении вследствие пх органиченного и поддающегося регулированию распределения в организме, мало зависящего от характера присоединенных к полимеру ФАВ. [c.54]

    Ранее уже упоминалось о стереоселективности ферментов, проявляющейся в различных обстоятельствах, например в связи с биологическим разделением рацемических смесей (гл. 12), специфичностью мальтазы и эмульсина (разд. 17.6), структурными и стереохимическими требованиями иротеолитических ферментов (разд. 18.2). Принято считать, что ферментативный катализ осуществляется через адсорбцию субстрата на поверхности большой белковой молекулы. Стереоспецифичность фермента можно объяснить, если допустить, что фермент обладает рецепторными центрами, способными связывать или принимать только особые типы групп. Рассмотрим в качестве примера асимметрически замещенный атом углерода. Фермент, обладающий рецепторами для трех или четырех групп, может различить два энантиомера, поскольку подходящий энантиомер адсорбируется, присоединяясь всеми тремя своими группами к рецепторным центрам, тогда как второй энантиомер в лучшем случае сможет соединиться только с двумя центрами. Присоединение субстрата к центрам фермента происходит либо за счет образования ковалентных или водородных связей, либо при взаимодействии ионных или полярных групп, либо путем заполнения впадин на поверхности фермента, которые вмещают группы или особой формы, или чуть меньше определенного размера. [c.341]

    Живые огранизмы выделяют огромное количество органических соединений, которые более века привлекают внимание химиков-органиков. Некоторые из этих соединений являются небольшими молекулами (сахара, гидроксикислоты), тогда как другие представляют собой очень большие частицы (белки, полисахариды, нуклеиновые кислоты). Соединения и той и другой группы характерны для всех живых систем. Между этими крайними случаями находятся вещества, молекулы которых имеют средний размер и степень сложности. Некоторые из них обладают сильным физиологическим действием, например витамины. Довольно часто соединения такого типа являются основой для исследований, нацеленных на получение лекарственных препаратов в этих препаратах необходимое физиологическое действие, которым обладает природное соединение, проявляется с большей силой и специфичностью за счет синтетических соединений родственного строения. Такого рода исследования базируются на том факте, что физиологическая активность соединения однозначно связана с его молекулярной структурой. Сравнение взаимосвязи структура — активность внутри больши> групп органических соединений позволяет постепенно пoзнaт молекулярную топографию некоторых рецепторных центров живых тканях, которые взаимодействуют и с природными со динениями, и с их синтетическими аналогами. [c.352]


    В настоящее время строение рецепторного участка на молекуле альбумина, связывающего 1,4-бенздиазепины, не известно. Однако по имеющимся данным можно утверждать, что такой участок обладает высокой структурной специфичностью по отношению к 1,4-бенздиазепинам. Методами гельфильтрации и кругового дихроизма показано [318, 319], что молекула ЧСА имеет один участок связывания для бенздиазепинов. В УФ-спектре бенздиазепины дают два максимума поглощения — вблизи 230 и 310 нм [3201. Первая полоса обычно интенсивнее и обусловлена переходом бензольного кольца молекулы 1,4-бенздиазепина, а вторая образуется вследствие резонанса хромоформной группы — 0 == Ы с бензольным кольцом. Частичное насыщение фенила не приводит к изменению интенсивности и максимумов поглощения различных бенздиазепинов. [c.235]

    Установлено, что многие лекарственные вещества влияют на конформации мембран и мембранных липидов. Шанжё и соавторы рассматривали мембрану как упорядоченную кооперативную систему, построенную из взаимодействующих субъединиц. В этих работах триггерные свойства мембраны трактуются на основе теории, аналогичной теории косвенной кооперативности ферментов, развитой Моно, Уайменом и Шанжё (см. 6.7). Каждая субъединица имеет рецепторный центр для данного специфического лиганда, сродство к которому меняется при изменении ее конформации. В упорядоченной решетке мембраны субъединицы (протомеры) взаимодействуют со своими соседями, чем и определяются кооперативные свойства. В зависимости от активности лиганда и энергии взаимодействия протомеров ответ мембраны на присоединение лиганда может быть постепенным или S-образным, становясь в пределе переходом все или ничего — фазовым переходом. Формальная модель описывает действие колицинов, дает качественное объяснение ряду фактов, в частности, тому, что различные родственные лекарственные вещества вызывают различные максимальные ответы мембраны. Первичное действие многих лекарств локализовано в мембранах и имеет кооперативный характер. Многие лекарства действуют в очень малых концентрациях (вплоть до 10 М) и обладают высокой специфичностью. Воздействие лекарства иа мембранный рецептор определяется молекулярным узнаванием, но о природе этих рецепторов мы еще мало знаем (см. 11.7). [c.340]

    Главное действие некоторых гормонов направлено на плазматическую мембрану клеток-мишеней. Под термином рецептор обычно понимают компоненты плазматических мембран, которые вовлечены во взаимодействие с данным гормоном. Они, ио-види-MOiMy, локализованы исключительно на поверхности мембранных клеток. Для того чтобы выяснить действие гормонов на молекулярном уровне, необходимо очистить и идентифицировать эти специфические мембранные рецепторные структуры, количество которых в тканях очень мало по сравнению с другим присутствующим материалом. Например, концентрация рецептора глюкагона в мембранах клеток печени очень низка и составляет 2,6 пмоль в 1 мг белка [30]. При столь малых количествах взаимодействие с иммобилизованными гормонами должно быть очень эффективным, чтобы обеспечить прочное связывание крупных мембранных фрагментов. Взаимодействие гормонов с их комплементарными рецепторами специфично и характеризуется высоким сродством. Константа диссоциации для глюкагона равна 10 —10 ° моль/л, для инсулина—5-10 " моль/л, а для норэпи-нефрина—10 —10 моль/л [35]. Очень трудно выделять такие малые количества стандартными методами. Использование биоспецифической хроматографии а высокоэффективных иммобилизованных рецепторах позволяет избирательно концентрировать [c.122]

    Нервные сигналы переходят от клетки к клетке через синапсы, которые могут быть электрическими (щелевые контакты) или химическими. В химическом синапсе деполяризация пресинаптической мембраны в результате прибытия нервного импульса открывает потенциал-зависимые кальциевые каналы, вызывая тем самым приток Са в клетку, что приводит к освобождению нейромедиатора из синаптических пузырьков. Медиатор диффундирует в синаптическую щель и связывается с рецепторными белками в мембране постсинаптической клетки в конечном итоге медиатор удаляется из синаптической щели путем диффузии, ферментативного расщепления или обратного поглощения выделившей его клеткой. Через рецепторные белки, образующие лиганд-зависимые каналы, реализуется быстрый постсинаптический эффект нейромедиатора-открытие каналов приводит к возникновению возбуждающего или тормозного постсинаптического потенциам в соответствии с ионной специфичностью каналов. При участии рецепторов, сопряженных с ферментог ми, например с аденилатциклазой, обычно осуществляются медленные и более продолжительные эффекты. [c.111]

    Пристальное внимание к проблеме получения меченых тритием органических соединений определяется несколькими объективными предпосылками достоинствами трития как радиоактивной метки (удобный период полураспада, высокая молярная радиоактивность и т.д.) наличием в настоящее время методов разделения сложных смесей с использованием высокоэффективной жидкостной хроматографии (ВЭЖХ) существенным преимуществом меченых тритием препаратов в исследованиях по лиганд-рецепторному связыванию высокими молярными радиоактивностями практическим отсутствием изотопных эффектов при специфическом связывании с рецепторами, что необходимо для изучения механизма действия биологически активных препаратов частым использованием меченых тритием соединений при фармакокинетических исследованиях для определения органа-мишени, где преимущественно накапливается лекарственный препарат, или скорости выведения этого препарата из живых организмов необходимостью тритиевых соединений для исследования метаболизма, изучения субстратной специфичности ферментов, а также использования их для поиска новых эффективных ингибиторов ферментов. Если при этом учесть, что тритиевые препараты как минимум в десять раз дешевле аналогичных С-меченых, то становится понятным большой интерес ко всему, что связано с получением тритиевых аналогов биологически активных соединений. [c.484]

    Теория, объясняющая характер взаимодействия антигена (или гаптена) с антителом, постулирует наличие активного рецептора в молекуле антитела, специфичность которого определяется или расположением положительно и отрицательно заряженных групп, соответствующих расположению таки.х же групп детерминанта антитела, или же наличием полости, в которую точно вписывается детерминант. Взаимодействие детерминантов антигена с антителами интересно сравнить со строго неспецифцчной адсорбцией различных анионов альбумином сыворотки. Карун (КагизЬ, 1950) высказал предположение, что в молекуле альбумина имеются участки, каждый из которых способен взаимодействовать с анионом своей системой боковых аминокислотных цепей последние могут принимать болыиое число различных конформаций, находящихся в равновесии друг стругом и обладающих почти равной потенциальной энергией. В присутствии органического аниона та конформация, которая наиболее соответствует аниону, стабилизируется и обеспечивает адсорбцию аниона на молекуле альбумина. В отличие от описанного специфичность взаимодействия антитело—детерминант антигена должна быть приписана сходной, но относительно, жесткой, а в силу этого селективной конформации рецепторных участков молекулы антитела. [c.685]

    Антагонизм лекарственных препаратов можно объяснить, предположив, что вещества, вызывающие ответную реакцию ткани, т. е. агонисты, вызывают сокращение или расслабление, взаимодействуя с характерными молекулярными структурами или рецепторами внутри или вне клетки. Кроме того, предполагают, что каждый агонист имеет свой специфический рецептор. Эта комбинация агонист — рецептор вызывает реакцию клетки, механизм которой не совсем понятен. 1Г1редполагают также, что каждый а нтагонист специфически соединяется с рецептором, связанным с агонистом. Торможение агониста лекарством-антагонистом может быть либо конкурентным, либо неконкурентным, аналогично ферментному торможению. Специфичность и направление метаболизма можно удовлетворительно объяснить исходя из действия ферментов. Такие реакции клетки, как расслабление или сокращение, могут быть объяснены степенью активации рецепторов. Механизм действия ферментов состоит в образовании комплекса фермент — субстрат, в котором субстрат специфически связан с комплементарной областью молекулы фермента затем этот комплекс может превращаться в фермент и продукты реакции. Как предполагают, точно так же соединение агониста с рецептором приводит сначала к механической или метаболической реакции. Также существует частичная аналогия между ферментами и рецепторами, хотя рецепторы не обладают ферментативной активностью по отношению к своим агонистам (Белло [44]). В противоположность ферментам существование рецепторов все еще не доказано, а рецепторная теория во многом обязана концепциям энзимологии. Очень сложно объяснить, каким образом комбинация агонист — рецептор вызывает реакцию клетки. [c.361]

    Другие пути поступления холестерина в клетку (неспецифический эндоцитоз рецепторный — с помощью рецепторов, не имеющих высокой специфичности к отдельным апопротеинам физиологический обмен холестерином между мембраной клетки и ЛПНП) не регулируются. [c.233]

    Эти реакции лежат в основе генерации так называемых рецепторных потенциалов, которые возбуждают постсинаптические мембраны воспринимающих нейронов (Wald, 1968 Этингоф, Остапенко, 1971). Механизм восприятия других сенсорных раздражений остается невыясненным. Предполагается, что и в других случаях раздражение воспринимается специфичным рецепторным белком, в функции которого ведущую роль должна играть его особая простетическая группа. [c.8]

    А. Рецептор ка.1ьцитриола. Присутствующий в клетках кишечника белок с мол. массой 90000— 100000 связывает кальцитриол с высокой степенью сродства и малой емкостью. Связывание насыщаемо, специфично и обратимо. Таким образом, этот белок отвечает основным критериям, характеризующим рецептор он обнаружен во многих из перечисленных выше тканей. Если при анализе используют физиологические концентрации солей, то большая часть незанятого рецептора выявляется в ядре в связанном с хроматином виде. Это аналогично локализации рецепторов если не всех стероидных гормонов, то во всяком случае прогестерона и Т,. Остается не ясным, требуется ли для связывания с хроматином предварительная активация комплекса кальцитриол—рецептор, как это имеет место с типичными стероид-рецепторными комплексами. [c.201]

    Среди множества проблем иммунологии, одну из них, если иметь в виду прежде всего чисто познавательный аспект этой области биологических знаний, следует отнести к самой фундаментальной, поскольку во многом она определяет возможность решения остальных. Эта проблема связана с изучением на атомно-молекулярном уровне механизмов узнавания и ответных реакций иммунной системы на появление в организме инфекционных антигенов - чужеродных белков, вирусов, бактерий, патогенных веществ. Важный шаг в познании принципов функционирования иммунной системы был сделан в 1959 г. Ф. Бер-нетом, разработавшим так называемую теорию клональной селекции, которая и по сей день пользуется всеобщим признанием [265]. Первоначально теория имела сугубо гипотетический характер. Однако заложенные в ней идеи оказались плодотворными и она вскоре смогла стать для экспериментальных исследований не только системой основополагающих научных принципов, но и конкретной программой поиска. В настоящее время эта программа выполнена и сегодня теория клональной селекции представляет собой скорее констатацию надежно установленных фактов, чем концептуальную основу дальнейшего развития иммунологии [266]. Специфичность антигенной реакции лимфоцитов, согласно теории Бернета, обусловлена наличием на поверхности Т- и В-клеток рецепторных белков, избирательно взаимодействующих с определенными антигенами. Связывание с ними рецепторов активирует клетку и вызывает ее эффективное размножение. Таким образом стимулируется пролиферация лимфоцитов, содержащих на своих поверхностях именно те рецепторы, которые, с одной стороны, комплементарны чужеродному антигену, а с другой - могут адекватно сигнализировать клетке о необходимости антиген-специфцч-ного ответа. По теории клональной селекции иммунную систему образуют миллионы различных клеточных семейств или клонов, каждый из которых состоит из Т- или В-лимфоцитов, имеющих общих предшественников. Так как во всех случаях клетка-предшественница детерминирована к синтезу определенного антиген-специфичного белка рецептора, то все клетки одного клона имеют одинаковую антигенную специфичность и, следовательно, могут ответить на сигнал рецептора только одним, присущим клеткам лишь данного клона, способом. Антигенами, как правило, являются белки и полисахариды. На поверхности этих молекул имеются участки, называемые антигенными детерминантами или эпитопами, которые предрасположены к взаимодействиям с антигенсвязывающим участком антитела В-лимфоцита или 3 67 [c.67]

    Рецепторы, восприняв специфический сигнал, должны выделять вещество, специфически изменяющее двигательную активность других, не рецепторных ундулоподий. Способ доставки такого вещества адресату — диффузия. Гарантией правильности адреса служит химическая специфичность адресат сам выбирает вещество, являющееся носителем информации о возбужденном состоянии рецептора. Диффузия в пределах клетки, т. е. организма с размерами порядка сотен микрон, обеспечивает довольно высокую скорость передачи сигнала промежуток времени между срабатыванием рецептора и поступлением вещества к ресничке порядка секунды. [c.200]

    Представление о том, что связывание гормон-рецепторного комплекса со специфическими участками хроматина регулирует транскрипцию определенных генов, получило всеобщее признание, однако прямо идентифицировать эти специфические участки невероятно трудно. Главный источник затруднений-неспецифическое связывание рецепторов с ДНК. Далее, для регуляции 50 генов может быть достаточно связьгаания лишь малой доли тех 10000 гормон-рецепторных комплексов, которые содержатся в клетке. А между тем даже 10000 рецепторов составляют по весу всего только 1/50000 часть общего клеточного белка поэтому в высокоочищенном виде рецепторный белок удалось получить лишь в очень малом количестве. В связи со всем этим трудно было выяснить, чем определяется специфичность действия рецепторов для стероидов-узнаванием определенных последовательностей ДНК, особых хромосомных белков или и тем и другим одновременно. Однако недавно с помощью методов генной инженерии удалось клонировать один ген, регулируемый кортизолом, и таким образом получить в большом количестве соответствующую ДНК. Было показано, что очищенный рецептор кор- [c.258]

    Некоторые авторы считают, что мутации, ведущие к изменению клеточных рецепторов, оказывают меньшее влияние на жизнеспособность бактерий, чем мутации, изменяющие рецепторный аппарат фага, на его жизнеспособность. Из этого делается вывод, что имеется определенная асимметрия возможностей эволюции для фага и бактерий. Вместе с тем положение сложнее, поскольку некоторые фаги в ходе эволюции приобрели (приобретают ) способность обходить ограничения, накладываемые этой асимметрией. Например, у разных представителей семьи Т-четиых фагов Е. соИ при изучении консервативности последовательности нуклеотидов в генах, эквивалентных по функции гену 37 фага Т4 (определяет последовательность аминокислот в белке хвостовых фибрилл и специфичность адсорбции) обнаружили следующее. Хотя эти белки и определяют морфологическую структуру (хвостовое волокно), их консервативность существенно ниже, чем консервативность белков головки. В то же время рецепторы для разных Т-четных фагов очень разнообразны и представлены не только разными белками-компонентами клеточной мембраны, но и небелковыми веществами. Например, рецептором фага Т2 является белок Отр F, фага КЗ — белок Отр А, фага Тб — белок Tsx, а рецептором фага 4 — липополисахарид. [c.201]

    В последние годы исследователи возлагают особые надежды на иммунохимические способы идентификации структурных компонентов нейрорецепторов. Высокая специфичность антител и их способность узнавать разные антигенные детерминанты рецепторных комплексов широко используется для выяснения структурной организации нейрорецепторов и процессов их биосинтеза, включая генно-инженерные исследования. Иными словами, поли- и моноклональные антитела являются важным инструментом для изучения механизмов рецептии и общих вопросов нейробиологии. [c.269]


Смотреть страницы где упоминается термин Рецепторная специфичность: [c.233]    [c.297]    [c.51]    [c.265]    [c.630]    [c.351]    [c.761]    [c.667]    [c.675]    [c.17]    [c.86]    [c.78]    [c.288]    [c.303]    [c.306]    [c.86]    [c.129]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте