Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий катион

    Зависимость степени гидратации ионов от их размеров становится наглядной при сопоставлении электропроводности различных электролитов. Можно было ожидать, что так как ионные радиусы катионов в кристаллическом состоянии возрастают от Li+ к s+, то наиболее сильно проводить электрический ток будет хлористый литий, а наименее сильно — хлористый цезий. Это подтверждается при сопоставлении электропроводности расплавленных хлоридов (табл. 36). [c.385]


Рис. 2. Изотермы вытеснения катионов цезия катионами натрия (1) и катионов натрия катионами цезия (2) при = О на платинированном платиновом электроде в растворах Рис. 2. Изотермы вытеснения катионов цезия катионами натрия (1) и <a href="/info/14863">катионов натрия катионами</a> цезия (2) при = О на платинированном <a href="/info/8603">платиновом электроде</a> в растворах
    На рис. 14-10 показаны кристаллические структуры нескольких типов ионных кристаллов. Хлорид цезия кристаллизуется в структуру, в которой и катион, и анион имеют координационное число 8. Сульфид цинка образует кристаллы в одной из двух структур-так называемой структуре цинковой обманки и структуре вюртцита, в которых у катиона и аниона координационное число 4. Фторид кальция кристаллизуется в так называемой структуре флюорита, где катион имеет координационное число 8 (каждый ион кальция окружен восемью фторид-ионами), а анион-4. Одной из кристаллических форм диоксида титана является структура рутила, в которой координационные числа для катиона и аниона разны соответственно 6 и 3. [c.609]

    На валентном электронном уровне атомов щелочных металлов содержится по одному электрону (и. ). В соединениях эти металлы проявляют единственную степень окисления ( + 1). Электроотрицательность щелочных металлов очень низка, а цезий и франций-самые электроположительные элементы = 0,86). Это обусловливает существование их в виде однозарядных катионов, образующих с большинством известных анионов соответствующие соли или солеобразные бинарные соединения. [c.163]

    Анализируемые соли могут быть в виде хлоридов, нитратов сульфатов или перхлоратов. Метод пригоден при содержании 0,05—3 мг лития, не более 0,1 м.г натрия и нескольких миллиграммов калия, рубидия или цезия. Катионы металлов других аналитических групп, а также соли аммония должны отсутствовать. [c.86]

    Рассматривая влияние различных ионов на изменение чисел переноса в мембранах, можно видеть в общем сходную картину с изменением -потенциала, а именно числа переноса катионов возрастают от лития к цезию и+<Ыа+<К <НЬ+<Сз+. [c.158]

    Для структуры соли определяющим является не столько тип формулы, сколько координационные числа катиона и аниона и соотношение их ионных радиусов (разд. 6.4.3). В структуре хлорида цезия каждый ион Сз+ окружен восемью ионами С соответственно каждый ион С " — восемью ионами С5+.. В структуре хлорида нат рия координационные числа катиона и аниона равны шести. В структуре фторида кальция вокруг иона Са + расположено восемь ионов Р по принципу электронейтральности координационное число иона должно быть равно четырем. Координационные числа катиона и аниона можно указывать при написании формулы соединения (по Ниг-гли), например для хлорида цезия СзСЬ/в, для хлорида натрия Na l6/6, для хлорида кальция Сар8/4. Электростатическая модель объясняет в первом приближении ряд физических свойств ионных соединений —твердость, температуры плавления и кипения. [c.348]


    Детальное изучение перенапряжения водорода в кислых растворах на фоне различных солей щелочных металлов показывает, что эффект специфической адсорбции характерен не только для анионов, но и катионов, хотя н последнем случае он проявляется слабее. В ряду —N3+——КЬ + —наблюдается увеличение т], которое при переходе от лития к цезию составляет около [c.255]

    Измерения С, ф-кривых в расплавах различных галогенидов щелочных металлов позволяют разделить эти соли на две группы по их влиянию на емкость двойного слоя. В расплавах солей лития и натрия емкость велика, сильно зависит от природы аниона и существенно возрастает с температурой, а в расплавах солей калия и цезия емкость относительно мала и слабо зависит от природы аниона и температуры. Такую зависимость емкости от природы соли можно понять, если учесть что анионы галогенов С1" и Вг имеют больший объем, чем катионы и Na . Поэтому в расплавах солей лития и натрия существует значительное отталкивание между анионами, которое определяет особенности структуры таких расплавов, а именно катионы располагаются свободно в октаэдрических дырках, образованных более или менее плотно упакованными анионами. Для галогенидов калия и цезия роль взаимного отталкивания анионов не существенна, так как ионные радиусы этих катионов и анионов галогенов близки. Поэтому в структуре расплава ионы разного знака занимают более равноправное положение. [c.146]

    Константа обмена, найденная по описанной методике, не зависит от параметров сорбционного опыта [72]. Единственным исключением является зависимость концентрационной константы обмена от удельной загрузки. Точность определения в опытах обмена цезия на водород на катионите КУ-2 составляла+10%. [c.128]

    Величина АЯ представляет собой сумму теплот гидратации катионов и анионов. Для ее разделения на слагаемые, соответствующие каждому виду ионов, приходится делать более или менее обоснованные допущения. Обычно (К. П, Мищенко) принимают, что теплоты гидратации ионов цезия и иода равны друг другу. [c.254]

    Кристаллическая решетка хлористого цезия построена как бы взаимопроникновением двух простых кубических систем, одна из которых содержит только катионы Сз , а другая — анионы С1" (рис. 67). [c.108]

    Рубидий и цезий в комплексных соединениях. Рубидий и цезий обладают незначительной комплексообразующей способностью. Но они широко представлены в различных классах комплексных соединений, в которых выполняют роль внешнесферных катионов [112, 113]. [c.106]

    Третий путь экстракционной очистки соединений рубидия и цезия предполагает использование сильноосновных растворителей, из-за значительной донорной способности которых растворитель присоединяется к катиону соли образуются устойчивые экстрагируемые соединения щелочных металлов [241]. Основность таких органических растворителей определяется функциональными группами типа Р -> О, полуполярные связи которых и стерическая доступность атома-до-нора электронов (0, N, S) обеспечивают высокую способность сольва-тировать, а значит, и экстрагировать щелочные металлы. [c.147]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    КЬ — Сз+ наблюдается увеличение т], которое в растворах солей кислоты при переходе от лития к цезию составляет около 40 мв (П. Герасименко, П. Шлендик). Прямое подтверждение роста специфической адсорбируемости катионов в этом ряду, а следовательно, и сдвига г )1-по-тенциала в положительную сторону дают расчеты, основанные на методе смешанного электролита (см. 26). [c.271]

    Минимальным поляризующим действием в ряду Ь —Сз должен был бы обладать Сз. Однако согласно последним сведениям иону Сз+ в некоторой степени свойствен эффект дополнительной поляризации. Поэтому в соединениях, включающих наряду с Сз+ сильно поляризующиеся анионы, благородно-газовая электронная оболочка иона Сз+(4с( °5525Р ) испытывает деформацию, приводящую к возникновению химической связи катион—анион, включающей значительную ковалентную составляющую. По-видимому, только фторид цезия СзР свободен от такого рода поляризационных взаимодействий. Уже для СзС1 теоретический расчет показывает значительный перенос заряда с хлора на цезий, в результате чего эффективный положительный заряд на атоме цезия много меньше чем -Ь1. Поляризационными эффектами может быть объяснен своеобразный характер изменения температуры плавления безводных галогенидов ЩЭ (подробно см. в работе [1,. с. 35])  [c.14]


    Одно из важных свойств солей ЩЭ — закономерное изменение термической устойчивости в ряду Li— s для соли данного стехиомет-рического состава. Из общих соображений, например основанных на учете поляризующего действия катиона ЩЭ на тот или иной анион, следует, что при наиболее низкой температуре будут разлагаться соли лития (твердый бикарбонат LiH Os настолько неустойчив, что его в отличие от других М НСОз нельзя выделить в твердом состоянии), при наиболее высокой — соли цезия [1]. Однако очень часто эта закономерность существенно усложняется. Причиной является не только изменение кристаллической структуры солей ЩЭ в ряду Li— s, но и разница в составе и свойствах продуктов разложения. Например, если термолиз карбоната лития протекает по простой схеме [c.20]

    Кислородные соединения. Окислы Ве—Ва имеют состав МО, и только у бария, катион которого имеет наибольшие размеры и поэтому самое малое поляризующее действие, вполне стабильна перекись ВаОг. Это обычный химический реактив, используемый как источник кислорода в окислительных реакциях (компонент запала в реакциях алюмотермии), для получения в лаборатории перекиси водорода (ВаОг-Ь -ЬН2504- Н202-1-Ва504 ) и т. д. Напомним, что перекисные соединения щелочных элементов (с. 15) также наиболее стабильны у самых тяжелых в подгруппе ЩЭ рубидия и цезия. [c.30]

    Глауконит и вермикулит представляют собой железо-алюмосиликаты, содержащие магний и калий. В природе глауконит встречается обычно в виде глауконитового песка, окрашенного в зеленые тона, причем интенсивность окрашивания определяется содержанием коллоиднодисперсного минерала глауконита, сцементированного крем-некислотой. В реакцию обмена вступают лишь ионы калия. Глауконитовый песок обладает ничтожной пористостью и ионный обмен происходит преимущественно на внешней поверхности, поэтому его обменная емкость невелика (см. табл. 1). Обменными катионами у вермикулита являются магний и калий. Вермикулит проявляет поразительную селективность по отношению к определенным катионам. Так, было обнаружено, что из раствора 0,1 н. Na I -f +0,001 H. s l образец вермикулита поглотил 96,2% цезия и 3,8% натрия. Такую же высокую избирательность поглощения вермикулит проявляет и в отношении к микроколичествам ионов стронция в присутствии высоких концентраций солей натрия. Это свойство позволило применить вермикулит в качестве сорбента для поглощения радиоактивных примесей при дезактивации сточных вод. [c.40]

    Интересно влияние катионов взятых солей на протекание реакции. Соли лития- и натрия диспропорционируются значительно труднее, чем соли калия, а рубидия и цезия — заметно легче. Бензоаты стронция и бария при реакции образуют соли фталевой, а не терефталевой кислоты. [c.143]

    Сродство ( сфоромолибдата к более тяжелым катионам щелочных металлов растет в ряду К <НЬ < Сз . Высокая избирательность солей гетерополикислот по отношению к цезию и высокая устойчивость неорганических ионообменников к ионизирующим излучениям определяют возможность их эффективного применения для извлечения цезия из сбросных растворов, полученных при переработке облученного ядерного топлива [13]. [c.45]

    Оксиды элементов главной подгруппы I группы, т. е. оксиды щелочных металлов, получают косвенным путем. Только литий при сгорании в кислороде образует оксид 20, натрий дает пероксид МагОг, калий, рубидий и цезий — соединения типа МеОг. Известны также озониды типа МеОз. Все эти высшие оксиды —пероксиды и супероксиды — обнаруживают тем большую устойчивость, чем больше радиус атома металла, т. е. чем больше стабилизирующее действие катиона на пероксид-анион О .  [c.287]

    Для галидов щелочных и щелочноземельных металлов харак-кулярных, образующих молекулярные решетки. Степень ковалент-рированная решетка хлорида натрия. Хлорид, бромид и иодид цезия кристаллизуются в решетке типа объемно центрированного куба. Тип решетки ионного кристалла определяется правилом, основанным на простых геометрических соображениях отношение радиусов катиона и аниона 0,2 соответствует решетке типа сульфида цинка если это отношение лежит в пределах от 0,22 до 0,41, мож- [c.293]

    Хороший выход по току можно получить только при снижении температуры электролиза. Этого можно достигнуть добавлением к поваренной соли других соединений, образующих с Na l низкоплавкие смеси. В то же время эти соединения не должны участвовать в электролизе во избежание загрязнения полученных натрия и хлора другими веществами. Добавляемые соли не должны вме-. сте с тем резко увеличивать растворимость натрия в расплаве и снижать электропроводность электролита. Необходимо также в качестве добавки в Na l применять легкодоступные и дешевые вещества. При выборе солевых добавок следует исключить все соединения, катион которых более электроположителен, чем Na. Из табл. 32 следует, что с этой точки зрения пригодны только соли кальция, калия, бария и натрия. Соединения стронция, лития, рубидия и цезия из-за высокой стоимости не могут иметь практического значения. Такие соединения как сульфаты, карбонаты, нитраты и гидроокиси, содержащие кислород, изменяют анодный процесс, поэтому не могут применяться в качестве добавок. Бромиды и иодиды дороги и применение их также будет влиять на анодный процесс. Фториды бария и кальция имеют высокую температуру плавления. [c.311]

    Кристаллические решетки КаС1 и СзС1 построены так в случае хлористого натрия каждый катион N3+ окружен шестью ионами С1 , а в случае хлористого цезия каждый катион Сз окружен восемью ионами С1 . [c.108]

    К первой аналитической группе, не имеющей группового реагента, относят катионы лития ЬГ, натрия N3 , калия К , аммония МН и магния Сюда же иногда относят катионы рубидия КЬ , цезия Сз , франция Рг . Так как эта группа катионов не имеет группового реагента, то катионы открывают в растворе с использованием различных аналитических реакций на каждый катион. Реакции прюводят в определенной последовательности. [c.293]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    Ионообменная хроматография. Получение чистых солей рубидия и цезия в промышленных масштабах принципиально возможно как с помощью классической хроматографии (т. е. чисто адсорбционных процессов), так и ионообменной хроматографии, в которой вместо адсорбентов используют органические и неорганические иониты. После исследований В. Кона и Г. Кона, которые для выделения рубидия и цезия из смеси щелочных металлов применили катионит дауэкс-50 (стирольная смола с активной группой —SO3H), было выполнено значительное число работ в этом плане и другими [c.143]

    В зависимости от зарядов ионов, замещающих друг друга, различают изовалентные и гетеровалентные замещения. В изовалентном замещении участвуют ионы с одинаковыми электрическими зарядами и близкими ионными радиусами, например, ионы калия, аммония, рубидия, цезия взаимозаменяемы также ионы стронция, бария, радия, магния и железа (П). При гетеровалентном изоморфизме нзаимоза-мещаемы разновалентные ионы равных или близких ионных радиусов. При этом различия в ионных радиусах могут быть значительно большими, чем при изовалентном изоморфизме. Например, ионы Li" можно заместить ионами Mg + (ионные радиусы одинаковы — 0,78 А). Замещаются также ионы Na+ ионами Са +, хотя ионный радиус натрия 0,98 А, а кальция 1,06 А. С другой стороны, ионный радиус меди (I) и натрия соответственно 0,96 и 0,95 А, но медь (I) образует ковалентные соединения, натрий — ионные, поэтому смешанные кристаллы таких медных и натриевых солей не образуются. Ионы с близкими ионными радиусами образуют изоморфные ряды соединений. Чем ближе величины ионных радиусов, тем легче катионы образуют изоморфные соединения. [c.78]

    Плотная упаковка с координационным числом 12 не может осуществиться, если радиусы ионов не равны. Так, вокруг иона цезия размещаются лишь 8 ионов хлора в решетке s l. Ион цезия находится в центре куба, в вершинах которого расположены ионы хлора. Ион натрия меньше иона цезия и вокруг него может расположиться только шесть ионов хлора в решетке Na l. В ZnS, где отношение радиуса катиона к радиусу аниона еще меньще, координационное число иона цинка равняется четырем (решетка типа алмаза с чередующимися ионами цинка и серы). С хорошим приближением величины периодов решеток могут быть вычислены по значениям радиусов атомов и ионов. [c.343]

    В ионных кристаллах, например солях, энергия определяется в основном электростатическим взаимодействием ионов. Их пространственное расположение определяется в первую очередь особенностями плотной упаковки шаров разного размера. Если один из ионов меньше другого (например, в СзС1), то координационное число 12 не может осуществиться. В решетке СзС ион цезия находится внутри куба, в вершинах которого находятся ионы хлора. Координационное число цезия в нем равняется восьми. Если отношение радиуса катиона к радиусу аниона еще уменьшается, то восемь соседей не могут уместиться вокруг маленького иона и осуществляется решетка типа простой кубической решетки НаС1, в которой в вершинах куба попеременно располагаются ионы хлора и натрия. Координационное число при этом уменьшается до шести. Если рассматриваемое отношение еще меньше, то образуется решетка с координационным числом четыре (например, 2п5 имеет решетку типа алмаза с чередующимися атомами серы и цинка). [c.631]


Смотреть страницы где упоминается термин Цезий катион: [c.14]    [c.311]    [c.75]    [c.147]    [c.138]    [c.138]    [c.497]    [c.123]    [c.182]    [c.36]    [c.654]    [c.93]    [c.89]    [c.271]    [c.138]   
Общая химия (1979) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смеси катионов первой группы в отсутствие лития, рубидия, цезия

Анализ смеси катионов первой группы в присутствии лития, но в отсутствие рубидия и цезия

Анализ смеси катионов первой группы в присутствии руби- j дия и цезия, но в отсутствие лития

Первая аналитическая группа катионов. Калий, натрий, цезий, рубидий, литий, аммоний и магний

Цезий

Цезий катион, энергия гидратации

Цезий цезий

Цезий, атомный и катионный радиус

Цезий, атомный и катионный радиус ионизационные потенциалы

Цезий, атомный и катионный радиус определение с дипикриламином

Цезий, атомный и катионный радиус электронное строение



© 2022 chem21.info Реклама на сайте