Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиральные структуры спираль

    Чаще всего органические оптически активные молекулы содержат один или более асимметрических атомов углерода, который связан с четырьмя различными заместителями, расположенными в вершинах тетраэдра, в центре которого находится атом углерода (рис. 19, а). Наличие в молекуле асимметрических атомов углерода — наиболее распространенный вид асимметрии. Другим типом асимметрии обладает молекула, закрученная в спиральную структуру. На рис. 19, б вычерчены правая спиральная структура и ее зеркальный антипод — левая спиральная структура. Молекула, свернутая в спираль одного и того же направления, будет оптически активна, даже если она не содержит асимметрических атомов. [c.35]


    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]

    Одна молекула белка содержит много водородных связей, которые являются одной из разновидностей внутримолекулярных сил притяжения, ориентирующих белковые цепи в трехмерном пространстве определенным образом, создавая вторичную структуру белка. На рис. 4.19 изображена а-спиральная структура, предложенная Полингом с сотрудниками на основе выполненного ими рентгеноструктурного исследования белков. а-Спираль — это спираль, которая, удаляясь от вас, закручивается по часовой стрелке. [c.100]

    NH—СО— HR—, спираль образует правый винт. Широкое распространение а-спиральных структур среди синтетических полипептидов дает основание полагать, что такие спирали являются наиболее характерными и устойчивыми конфигурациями полипептидных цепей. Впоследствии это подтвердилось многочисленными физико-химическими исследованиями, в которых изучалась стабильность а-спиральной конфигурации полипептидов в самых различных условиях. Было обнаружено, что а-спираль стабильна в сравнительно широком диапазоне условий (pH, температура), а также в условиях, при которых многие белки остаются нативными. [c.540]

    Весьма сходную с полиглицином П спиральную структуру имеет поли (L-пролин). Из-за присутствия больших по размеру боковых групп более предпочтительной оказывается левая спираль. Надо сказать, что для полипептидной цепи из L-аминокислот любой способ укладки в спираль будет приводить к разной стабильности правой и левой спиралей. [c.92]


    В живых организмах белки существуют не просто в виде длинных, гибких цепей более или менее хаотической формы. Белковые цепи закручиваются или распрямляются определенным образом, принимая специфические формы, необходимые для функционирования того или иного белка. Эта особенность структуры белков называется их вторичной структурой. Одной из важнейших и наиболее распространенных вторичных структур является ос-спираль, впервые установленная Лайнусом Полингом и Р. Б. Кори. Схематическое изображение спиральной структуры белка дано на [c.448]

    Принципиально а-спираль может быть образована как l-, так и о-аминокислотнымн остатками. Склонность полипептидной цепи к образованию спиральной структуры в значительной степени зависит от природы боковых цепей аминокислот. Различают стабилизирующие спираль аминокислоты (Ala, Val, Leu, Phe, Trp, Met, His, Gln) и дестабилизирующие (Gly, Glu, Asp, Ile, Thr, Lys, Arg, Tyr, Asn, Ser). В случае кислых и основных аминокислот дестабилизирующее действие определяется наличием зарядов на боковых группах. В полиглутаминовой кислоте и полилизине, например, а-спираль образуется при pH 2 и 12 соответственно, т. е. при преобладании незаряженных боковых функциональных групп. При одноименно заряженных боковых группах силы отталкивания сильнее, чем прочность Стабилизирующих водородных связей. В случае, изолейцина дестаби- [c.378]

    Весьма интересный набор конформаций реализуется в том случае, когда оба угла, ф и -ф, близки к —60°. Этой области углов соответствуют спиральные структуры, стабилизированные внутрицепочечными водородными связями. Наибольший интерес представляет а-спираль (рис 2-8), причем правая спираль из L-аминокислот намного стабильнее левой. Пока в природе обнаружены только правые а-спирали. Об- [c.92]

    Пептидная цепь может укладываться в пространстве в виде спирали (наподобие винтовой лестницы). В одном витке спирали помещается около четырех аминокислотных остатков. Закрепление спиральной структуры обеспечивается водородными связями между группами С=0 и ЫН, направленными вдоль оси спирали (на рис. 16.4 показана только часть этих водородных связей). Все боковые радикалы К аминокислот находятся снаружи сп фали. Такая конформация названа а-спиралью. [c.419]

    В крахмале и гликогене цепь тоже образована остатками глюкозы, но на этот раз используется а-1,4-связь. Вытянутая конформация уже невозможна, и цепи скручиваются в спираль. Из спиральных структур, образуемых биополимерами, одной из первых (в 1943 г.) [52] была открыта левая спираль амилозы, идущая вокруг молекул иода (Ь) в хорошо известном комплексе иода с крахмалом (рис. 2-17). Число остатков на виток равно 6, шаг спирали — 0,8 нм, диаметр — около 14 нм [53, 54]. [c.119]

    Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать а-спираль (рис. 1.17). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено Ь-аминокислотным составом природных белков. Движущей силой в возникновении а-спиралей (так же как и 3-структур) является способность аминокислот к образованию водородных связей. В структуре а-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, а на один аминокислотный остаток приходится 0,15 нм. Угол подъема спирали 26°, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) а-спиральной структуры составляет 2,7 нм. [c.60]

    Те макродефекты, о которых было упомянуто в первых главах книги, являются следствием микродефектов их структур. Спираль на грани (0001) кварца (см. рис. 15, стр. 17) несомненно является следствием спиральной дислокации, появившейся во время роста этого кристалла. [c.265]

    Одна из главных канонических форм полипептидной цепи была впервые обнаружена Л. Полингом и Р. Кори в 19.51 г. и названа а-спиралью (рис. 41). В общем случае спиральная структура возникает, когда во всех звеньях полипептидной цепи углы поворота вокруг простых связей имеют одинаковые величину и знак, что и приводит к постепенному закручиванию цепочки. Структура а-спирали, помимо невалентных взаимодействий ближайших атомов, стабилизируется также внутримолекулярными водородными связями между С=0- и N—Н-группами полипептидного остова. Радикалы аминокислотных остатков оказываются иа периферии образованного спиралью цилиндра и могут, в зависимости от харак- [c.93]

    Следовательно, основной вклад в оптическую активность дает спираль 3] , свойственная структуре этой полимерной цепи. Б отсутствие оптически деятельного атома правые и левые спирали в силу симметрии образуются с одинаковой вероятностью. Наличие оптически деятельного атома С в боковом привеске делает молекулу в целом асимметричной и навязывает спиралям 3 определенное направление закручивания. Отсюда и огромный вклад спиральной структуры в оптическую активность вещества. Однако растворы подобных оптически активных полимеров в углеводородных растворителях сохраняют большую оптическую активность, близкую к активности в кристаллическом состоянии. Следовательно, в растворенных макромолекулах сохраняются спиральные витки одного определенного направления закручивания, подобно тому как это имеет место в кристалле. [c.78]


    Создавалось впечатление, что несколько дополнительных рентгенограмм смогут показать, как уложены белковые субъединицы, — особенно если они располагаются спирально. Вне себя от возбуждения я утащил из Философской библиотеки статью Бернала и Фанкухена и принес ее в лабораторию, чтобы Фрэнсис посмотрел рентгенограмму ВТМ. Увидев пустые места, характерные для спиральных молекул, он загорелся и тут же предложил несколько возможных спиральных структур ВТМ. Тут я понял, что мне все-таки придется по-настоящему разобраться в его теории дифракции на спиралях. Если бы я ждал, пока у Фрэнсиса выберется свободная минута, чтобы помочь мне, это избавило бы меня от необходимости постигать математику, но стоило бы Фрэнсису выйти из комнаты, и у меня все останавливалось бы на мертвой точке. К счастью, даже поверхностных знаний было достаточно, чтобы увидеть, почему рентгенограмма ВТМ указывает на спираль, витки которой отстоят друг от друга на 23 А вдоль оси. В сущности правила были так просты, что Фрэнсис даже подумывал о том, чтобы изложить их под заглавием Преобразования Фурье для птицеловов . [c.68]

    Методы исследования пространственного строения белков и пептидов в растворе. Конформационные состояния белков и пептидов в растворе исследуются различными методами, каждый из которых имеет свои достоинстаа и ограничения. Информацию о вторичной структуре можно получить из ультрафиолетовых спектров поглощения в области ISO — 210 нм как показали исследования регулярных полипептидов (например, полилизина), а-спираль имеет меньшее (гипохромизм), а Р-структура большее (гиперхромизм) поглощение, чем неупорядоченный клубок. В течение долгого времени процентное содержание а-спиральных структур оценивали по кривым дисперсии оптического вращения (уравнение Моф-фита, 1956). В настоящее аремя содержание различных типов аторичных структур определяется из спектров кругового дихроизма (КД) на основе сравнения спектров пептидов и белков с кривыми КД канонических вторичных структур, полученных для регулярных полипептидов (Э. Блоут, 1961) (рис. 64) или выведенных на основе анализа кривых КД ряда белков с установленной пространственной структурой в кристалле. [c.111]

    Как только я увидел рентгенограмму, у меня открылся рот и бешено забилось сердце. Распределение рефлексов было неизмеримо проще, чем все, что получали раньше для А-формы. Более того, бросавшийся в глаза черный крест мог быть лишь результатом спиральной структуры. Пока речь шла об А-форме, доказательства спиральности оставались косвенными и тип спиральной симметрии был неясен. Но для В-формы можно было получить некоторые важнейшие параметры спирали, просто посмотрев на рентгенограмму. Не исключено, что всего за несколько минут можно будет установить число цепей в молекуле. Расспросив Мориса, что же они извлекли из этой рентгенограммы, я узнал, что его коллега Р. Д. Б. Фрэзер уже успел серьезно поработать над трехцепочечными моделями, но ничего интересного у него до сих пор не получилось. Хотя Морис соглашался, что доказательства спиральности теперь неоспоримы (теория Стоукса - Кокрена - Крика ясно указывала на существование спирали), он не считал это главным. В конце концов, он и раньше думал, что получится спираль. Трудность, по его мнению, заключалась в отсутствии какой бы то ни было гипотезы, которая позволила бы им расположить основания регулярно внутри спирали. Конечно, при этом они исходили из предпосылки, что Рози права, стремясь расположить [c.96]

    Спиральная структура макромолекул может сохраняться в растворителях, слабо действующих иа Н-связн даже при полной сольватации индивидуальных молекул. В сильно взаимодействующих растворителях водородные связи нарушаются и форма спирали переходит в статистический клубок. Переход спираль-клубок на- блюдают по изменению оптического вращения и вязкости растворов в зависимости от состава смеси слабого (например, хлороформа) и сильного (например, дихлоруксусной кислоты) растворителя. При увеличении концентрации дихлоруксусной кислоты правое вращение сменяется на левое. Вязкость растворов при этом резко падает. [c.288]

    На основании рентгеноструктурного анализа и ранее полученных данных о строении нуклеотидов и нуклеиновых кислот Уотсон и Крик предложили для ДНК структурную модель, согласно которой макромолекула ДНК имеет форму спирали, причем в спираль закручены одновременно две молекулы ДНК (двухцепочечная спиральная структура). Эта двойная спираль имеет одну общую ось и построена так, что основания обеих цепей расположены внутри спирали, а углеводные остатки с фосфатными группами — снаружи спирали (рис. 51, 52). При этом основания одной молекулярной цепи с основаниями другой цепи образуют строго фиксированные пары, соединенные друг с другом водородными связями. Симметричное построение спирали требует постоянства межспиральных расстояний, а это возможно лишь в том случае, если размеры пар оснований, расположенных друг против друга, будут одинаковыми. Такому условию отвечают пары, построенные из одного пуринового и одного пиримидинового основания аденин — тимин и цитозин — гуанин, что обеспечивает и максимальное число водородных связей в спирали  [c.362]

    Важнейшей особенностью внутримолекулярных взаимодействий, стабилизирующих макромолекулярную структуру ДНК, является их кооперативность. Для двойных спиралей, построенных из комплементарных гомополинуклеотидов, это означает, что при их денатурации, происходящей, например, при повышении температуры и приводящей к образованию изолированных полинуклеотидных цепей, все звенья спиральной структуры разрушаются одновременно. Такой процесс называют плавлением двойной спирали. Его описывают кривой плавления, которая, в свою очередь, характеризуется мпературой плавления Тт и шириной температурного интервала, в котором происходит разрушение двойной спирали (рис. 16). [c.29]

    Встречаются и другие спиральные структуры, диаметр которых может быть как больше, так и меньше, чем диаметр а-снирали они такн<е играют определенную роль в формировании структуры белков [13]. В спирали Зю на один виток приходится ровно три остатка каждый карбонил связан водородной связью с третьей по ходу цепи N—Н-группой. Таким образом, эта спираль закручена сильнее, чем а-спираль. я-спираль содерн<ит 4,4 остатка на виток и по диаметру превосходит а-спираль. Хотя Зю- и л-спирали не относятся к основным структурным элементам белков, они тем не менее встречаются в них, чаще всего образуя по одному витку на концах спиралей. [c.94]

    Возможно существование нескольких различных спиральных структур, возникающих при образовании водородных связей между структурными элементами пептидной связи (NH- и СО-группы), из которых наиболее известна а-спнраль (рис. 3-14) с параметрами п = 3,6, i = 0,15 нм и h = Oi54 нм. В случае а-спирали за счет внутримолекулярных водородных связей образуется 13-членная кольцевая структура. Правильно назвать такую структуру можно так а(3,6)з)-спираль. Другими упорядоченными конформациями спирального типа для остова молекулы белка являются Зю-спираль, 7г(4,4) -спираль и 7(5,117)-спираль. [c.378]

    Общим свойством для белкоз пи фрагментов белков, проникающих в липидные бимолекулярные слои, является повышенное содержание в них а-спиральных структур. У мембранных белков, таких, как гликофорин или бактериородопсин, в липидном бимолекулярном слое удалось выявить один или несколько фрагментов, образующих а-спираль и состоящих из неполярных аминокислот [9]. [c.313]

    Многие высокомолекулярные белки имеют спиральную структуру молекул (вторичная структура белка). Две спирали за счет образования многочисленных межмолекулярных водородных связей образуют двойную спираль. На один виток спирали приходится около четырех аминокислотных остатков (-КН-К-СО-) с различными по строению углеводородными радикалами К. Расстояние между витками спирали около 0,54 нм. Внутримолекулярная во дородная связь стабилизирует структуру каждой спирали. Структуру двойной спирали многих белков стабилизируют, кроме водородных связей, также дисульфидные связи 8-8, возникающие между соседними макромолекулами. Спирали белка могуг свтаться в клубок или образовывать нитевидные структуры — фибриллы. [c.43]

    Остов полипептидной цепи может образовывать спиральные структуры с параметрами, близкими к двойной спирали ДНК в В- и 4-формах. Как показали конформационные расчеты н построение молекулярных моделей, стереохимически возможны два типа спиральных структур, одна из которых (/) имитирует структуру повторяющихся Г -метилпирролкарбоксамидных единиц дистамицина, а вторая (g) представляет собой регулярную спираль, в которой карбонильные группы остова могут образовывать водородные связи с 2-аминогруппами гуанина, находящимися в одной и той же полинуклеотидной цепи (рис. 8.18). Две антипараллельные, И или tg, пептидные цепи можно расположить в узкой бороздке таким образом, что образуются водородные связи между пептидными группами двух цепей и ос-Еованиями ДНК. Этот структурный мотив был обнаружен экспериментально. [c.292]

    Б 1954 г. Герен исследовала образование миелина вокруг седалищного нерва эмбриона цыпленка [1]. Было установлено, что чпсло слоев зависит от возраста эмбриона и что на ранних стадиях прослеживается спиральная структура. На рис. 4.4 приведены результаты, полученные Герен на периферическом нерве, Вероятно, подобная ситуация происходит при миелиниза-цпи волокон центральной нервной системы аксон вызывает депрессию на поверхности шванновской клетки, которая начинает расти и образует спираль миелина вокруг него. Как было показано, на культуре ткани один виток завершается за 44 ч.. Увеличение числа витков спирали приводит к сжатию цитоплазмы, в результате чего плазматическая мембрана шванновской клетки становится значительно более плотноупакованной. Поэтому зрелая миелиновая оболочка представляет собой не- [c.94]

    С помощью этого метода была установлена а-спиральная структура двух глобулярных белков -- мйоглобина и гемоглобина (Дж. Кендрью, М. Перутц), витамина Ви и инсулина (Д. Ходжкин), двойная спираль ДНК (Ф. Крик, Дж. Уотсон, М. Уилкинс), структура фермента лизоцима и т. д. [c.512]

    На упругую нить похожа и двойная спираль молекулы ДНК. При бо.1ц.ших масштабах ее спиральная структура незаметна, и она представляется в виде сплошной упругой нити. Сопротивление изгибу таких молекул имеет ту же природу, что и у обычных твердьгх веществ. Небольшой изгиб, обусловленный, например, малым изменением валентных углов между соседними звеньями цепи, складывается при большом числе звеньев и превращает молекулу в упругую гибкую нить. Свойства такой макромолекулы вполне аналогичны свойствам длинного запутанного мотка стальной проволоки. Так, если закрепить один конец мотка, то второй можно перемещать в JЩ)бoм направлении почти без усилий на расстояния порядка диаметра клубка. Иначе говоря, концы достаточно длинного участка упругой нити могут ориентироваться один относительно другого произвольным образом и изменять свою ориентацию практически без приложения внешних усилий, т. е. в результате своего теплового движения. [c.731]

    Спираль 2,2 (2,2 остатка иа виток, семичленный Н-связанныи цикл) оказывается весьма напряженной и в природных полипептидах и белках не реализуется. Спираль 3, хотя и является напряженной, тем не менее существует в природе, в частности найдена в миоглобине и лизоциме. Спирали 4,4 , или л-спирали, в белках практически не встречаются. В силу ограничений, вносимых структурой пролина (фиксированный угол ), полипролин может существовать в специфических спиральных конформациях, обозначаемых как спираль полнпролина I н спираль полипролнна 11 (рнс. 45). Такие спирали во многом подобны спирали коллагена. Параметры спиральных структур (рис. 42) приведены в таблице 4. [c.95]

    Домен М больше по объему, чем М . Методом малоуглового рентгеновского рассеяния покаэаио, что оба эти домена содержат а-спиральные структуры, перпендикулярные липидному бислою (8—12 а-спиралей в М1 и 5—8 в М ). [c.618]

    Они были получены для растворов казеина в 6 М растворе мочевины — расчгворителя, способствующего образованию конформации статистического клубка. Значения для всех растворов казеинов были найдены равными 0 0 —60, что также характерно для Статистического клубка. Значения =—680 и = —630 были взяты в качестве эталонных значений параметров и для чисто спиральных (а-спираль) конформаций структур белков, так как в литературе принято характеризовать оптическое вращение чисто спиральных форм именно этими значениями параметров а,, и [248]. Значения о = —1950 и = 125 были взяты из данных по оптическому вращению для полипептидов поли- -пролина, которые в литературе [238] принято считать за эталонные для Р-струк-туры. [c.105]


Смотреть страницы где упоминается термин Спиральные структуры спираль: [c.66]    [c.11]    [c.449]    [c.386]    [c.29]    [c.272]    [c.195]    [c.441]    [c.657]    [c.69]    [c.79]    [c.95]    [c.31]    [c.147]    [c.656]   
Физическая химия (1978) -- [ c.606 ]




ПОИСК





Смотрите так же термины и статьи:

Спиральные структуры



© 2024 chem21.info Реклама на сайте