Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Живые вторая

    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]


    Поэтому Берцелиус и назвал вещества, которые можно добыть из живых организмов, органическими, а все остальные— неорганическими. Первые — продукт жизни, а вторые — нет. Если вы знаете детскую игру про животное, растительное и минеральное царства, то органические вещества вы отнесете к царству животных или [c.9]

    Расчетом было определено, что за время эксплуатации факельной установки из первой и второй технологических линий в систему факельных трубопроводов было выброшено 9625 нг полиэтилена и продуктов его разложения. Переходу горения в детонацию могло способствовать уменьшение живого сечения трубы, что обусловлено накоплением в ней полиэтилена. О наличии полиэтилена свидетельствовал так же выброс и горение его а участке первого разрушения, [c.205]

    Расходом жидкости называется ее количество, протекающее через живое сечение потока в единицу времени. Обычно расход измеряется в единицах объема (м /с, м /ч, л/с), однако может измеряться и в единицах массы (кг/с). В первом случае расход называется объемным, во втором —массовым. [c.13]

    Для альпинистов, которые относятся к своему занятию серьезно, одной из самых опасных операций является динамический траверз . Так называется преодоление труднопроходимого участка пути, где альпинист каждое мгновение находится в неустойчивом положении и удерживается от падения только благодаря наличию собственного импульса- (количества движения). В некотором смысле каждый живой организм постоянно совершает динамический траверз. Один из наиболее общих научных законов, второй закон термодинамики, утверждает, что любой процесс, протекаю-шлй в замкнутой системе (каковой является исследуемый объект плюс все 11  [c.323]

    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]


    С помощью этой формулы, связывающей степень растекания струи стр/. к = Рр Рк по фронту решетки и ее коэффициент сопротивления, можно решить поставленную в предыдущей главе вторую задачу. Все величины, входящие в подкоренное выражение зависимости (4.80), в постановке данной задачи являются заданными, при этом коэффициент Ср зависит от вида решетки, формы ее элементов, коэффициента живого сечения и др. [c.109]

    Значение M = 1,05 получено при отсутствии верхнего короба, т. е. при отсутствии подсасывающего действия выходного отверстия короба. При установке верхнего короба степень неравномерности распределения скоростей по электродам несколько повышается (Мк = 1,14), так как возрастают скорости истечения через крайние правые электроды. Результаты, близкие к этим (Мк = 1,16), получены также в случае установки одной половины уголковой решетки во второй по ходу потока половине сечения корпуса аппарата. При этом коэффициент живого сечения решетки увеличен до / = 0,35. [c.260]

    Во-вторых, надо вспомнить морские купания. Дальше будет упомянуты случаи катастрофических нефтяных загрязнений великолепных пляжей во Франции, в Калифорнии. В-третьих, моря заселены несметным множеством живых существ (они-то и дали начало нефти) и среди них много полезных и важных для человека (рыбы, моллюски, ракообразные и др.). Нефтяное загрязнение воды, в которой они живут, наверное вредно для них. Но так ли это На этом вопросе следует остановиться подробнее, потому что он очень важен и не совсем ясен. [c.96]

    При рассмотрении биокинетики можно выделить четыре подсистемы биохимическую, биофизическую, микробиологическую и популяционную. Первая подсистема — биохимическая — описывается закономерностями скоростей биохимических реакций вторая — биофизическая — описывается закономерностями протекания физических явлений в живых организмах (например, диффузия макромолекул через полупроницаемую мембрану, меха- [c.145]

    Поток жидкости может двигаться внутри канала, ограниченного твердыми стенками, заполняя все его сечение или только часть (живое сечение меньше сечения канала). В первом случае мы имеем дело с так называемым напорным движением жидкости, во втором — с безнапорным. При безнапорном движении жидкости возникает граница раздела между движущейся жидкостью и пространством над ней. [c.38]

    Сточные воды второй группы сбрасывают заводы нефтехимической, коксохимической, целлюлозно-бумажной промышленности, органического синтеза и многие другие. Загрязняющие вещества этих стоков особо вредны для живой природы. Наиболее опасны для всего живого ядовитые органические вещества фенолы, смолы, меркаптаны и др. Их попадание в водоемы ведет к отравлению воды, непригодности ее для питья, хозяйственно-бытовых нужд населения и водопоя скота. [c.244]

    Известен ряд эвристических правил для построения схем разделения [1161 и теплообменных систем [1171. Итак, даже при построении реакторной схемы мы сталкиваемся с необходимостью выбора наилучшей схемы из большого числа различных вариантов. Так, реакцию можно проводить в реакторах смешения или вытеснения либо в их комбинации, может варьироваться их число, употребляться или не употребляться рецикл, возможны различные схемы теплообмена исходного потока с промежуточными и выходными потоками реакторного узла. Выбор одного из огромного числа вариантов основывался на интуиции проектировщика. Теперь же ставится задача поручить эту творческую работу (или хотя бы ее часть) электронной вычислительной машине. Другими словами, ставится задача создания теории построения (синтеза) ХТС [1161, [118], [119]. При этом возможны два пути. Первый путь — формализация того способа мышления, которым пользуется человек при создании новых схем, формализация существующих эвристических правил, создание новых, а также разработка методов использования этих правил, приоритета одних перед другими, и т. д. Второй путь — полностью алгоритмический подход, состоящий в том, чтобы сформулировать проблему синтеза как математическую и развить математические методы ее решения. Не давая окончательного ответа на вопрос, какой путь лучше, приведем пример совсем из другой области. Многовековая эволюция живого мира привела к способу передвижения живых существ с помощью ног. Многочисленные изобретения средств [c.188]

    Возможны два направления в изучении химической природы твердого топлива. Первое рассматривает его в статическом состоянии как готовый продукт, а второе — как природное органическое вещество, которое находится в процессе непрерывного изменения и трансформации, начиная с живых растений и кончая последней стадией, когда оно превращается в чистый углерод. Твердое топливо представляет собой полезное ископаемое и является продуктом естественноисторического процесса углеобразования, и поэтому при его изучении обязательно необходимо учитывать эти два важных обстоятельства, которые находятся в тесной связи. [c.6]

    Позвольте на этот случай дать вам несколько советов. Во-первых, побольше читайте. Пусть эта книжка будет не единственной, а лишь одной из длинного списка. (А список средней длины вы найдете на следующей странице.) Во-вторых, побольше спрашивайте, не стесняйтесь разговаривать с теми людьми, кто так или иначе имеет отношение к выбираемому вами делу. Живой человек, да еще настоящий знаток, энтузиаст своего дела, может рассказать больше, чем десяток книжек. В-третьих, чтобы понять суть какого-то дела, его все-таки надо испробовать самому. Поэтому лучший путь в нефтяники, на наш взгляд,— через ПТУ. Конечно, можно сразу пойти в техникум или в институт, сэкономить таким образом лет 5—6. Но подумайте, какими потерями и для вас, и для государства обернется эта экономия , когда вы поймете свою ошибку уже после получения диплома. Всю жизнь тащить лодку посуху ,— как метко выразился один из наших писателей по поводу неудачников, занимающихся не своей работой,— что может быть горше ... [c.153]


    Большинство природных и технологических процессов, протекавших вокруг нас, связаны с химическими превращениями многокомпонентных систем, состоящих из большого числа соединений. По-видимому, в природе существуют два типа многокомпонентных систем с более-менее четко выраженной степенью детерминированности и многокомпонентные стохастические системы (МСС) со случайным распределением компонентного состава [1-28]. К МСС относятся, прежде всего, геохимические объекты [1-6], каустобиолиты [7-11], нефти, торфы, природные газы, газоконденсаты, асфальты. Во-вторых, к этой группе принадлежат техногенные системы нефтепродукты и фракции нефтей [12,13], -продукты переработки твердого топлива [14], техногенные углеводородные газы [15-20], углеводородные масла и топлива [16,17], нефтяные асфальтены и смолы [22,23], продукты полимеризации многокомпонентных мономерных и олигомерных систем [23-25], полимерные смеси, продукты термо- или фотодеструкции органических веществ [26,27] и т. д. К аналогичным системам относится вещество межзвездных газопылевых туманностей [27], продукты метаболизма живого вещества [28] и геохимические системы биоценозов, например, почвы [1-3]. [c.5]

    Различают производительность общественного труда и производительность индивидуального труда. Первая учитывает все затраты общественно необходимого труда, вторая — только затраты живого труда на данном участке производства за определенный промежуток времени. [c.29]

    Автор. А теперь давайте перейдем к второму вопросу и посмотрим, в каком еще физическом процессе происходят малые хаотические перемещения частиц, похожие на микродвижения взаимодействующих частиц в живых организмах  [c.20]

    Действительно, развитие живых организмов сопровождается упорядочением вещества, составляющего организм. С точки зрения классической термодинамики это выглядит как самопроизвольное уменьшение энтропии живых систем и, конечно, явно противоречит второму закону термодинамики. Однако данное противоречие лишь кажущееся, поскольку увеличение энтропии определяет направление самопроизвольных процессов лишь для изолированных систем, а не открытых, какими являются живые организмы. В реальных условиях уменьшение обшей энтропии организмов при их развитии осуществляется при условии [c.297]

    Тогда систему уравнений (XIV.8) можно объединить, доумно-жив второе на /= / — 1. Тогда получим  [c.251]

    Осуществляя синтез химических веществ, можно часть обычных изотопов заменить на редкие стабильные изотопы. Например, водород-1 можно заменить на водород-2, углерод-12 — на углерод-13, азот-14 — на азот-15, а кислород-16 — на кислород-18. С помощью таких жченых соединений можно изучать механизмы реакций, происходящих в живых тканях. Новатором в такого рода работе был американский биохимик Рудольф Шонхеймер (1898—1941), который, используя водород-2 и азот-15, провел важные исследования жиров и белков. После окончания второй мировой войны такие изотопы стали более доступны, что позволило провести более тщательное изучение механизмов реакций. Примером того, какую роль могут сыграть изотопы, служит работа американского биохимика Мелвина Келвина (род. в 1911 г.). В 50-х годах XX в. он применил углерод-14 для изучения механизма реакций фотосинтеза. Работу эту Келвин проделал с такой обстоятельностью, которая всего лишь двадцать лет назад считалась совершенно невозможной. [c.173]

    По данным Б.С. Соколова, в развитии живого мира планеты выделяют пять основных этапов первый (4,25 млрд. пет) — эобиотный, появление простейших гетеротрофных систем, способных к самовоспроизведению второй (3,7 — 3,5 млрд. лет) — возникновение фотосинтезирующих механизмов у прокариотических прототипов третий (1,9 — 1,6 млрд. лет) — [c.186]

    По способу, разработанному в СССР [15], термоэластопласт с двумя концевыми поли-а-метилстирольными блоками получают следующим образом. Вначале проводят полимеризацию а-метилстирола в углеводороде в присутствии втор-бутиллития до образования поли-а-метилстирольного блока. Специальный технологический прием позволяет вести полимеризацию а-метилстирола в углеводородной среде с достаточно высокой скоростью. Затем осуществляется полимеризация бутадиена на живом поли-а-метил-стирольном блоке до образования двухблочного сополимера. После полного исчерпывания бутадиена в систему вводят полярную добавку II проводят полимеризацию второй части а-метилстирола до образования трехблочного сополимера. Степень превращения а-метилстирола зависит от температуры на третьей стадии полимеризации. [c.286]

    Способностью направлять поток параллельно оси аппарата, выравнивая е го одновременно по сечению, обладает и решетка, составленная из объемных стержней треугольной формы. Поэтому была исследована и система газораспределения, в которой первая решетка состояла из девяти таких стержней (fj 0,30), а вторая была перфори1)ованной с коэффициентом живого сечения = 0,365. При этом, как и в предыдущем варианте, объемная решетка была продлена сплошной вертикальной перегородкой (газоот )ажателем) в глубь ункера. Этот вариант дал результаты, близкие к варианту со штампованной решеткой (Мп = 1,10). [c.237]

    В [9] использовался графический способ сопоставления поверхностей. На графиках одна из координат aF/М или aF N равносильна координатам Ом [8] и Q/(NAt), при единичном температурном напоре она переходит в энергетический коэффициент. Вторая координата — затрата мощности на циркуляцию потока. При сравнении выбирались пучки, равные по объему К и по живому сечению для прохода газа /г. Следует заметить, что условие /r=idem является лишним. Действительно, величина N пропорциональна отношению VG/fr, а при использовании уравнения неразрывности оказывается пропорциональной V. Отсюда следует, что при построении диаграмм сравнения достаточно одного дополнительного условия V=idem. При такой постановке задачи вообще неясно, по какой же из величин сравниваются поверхности. Вместе с тем при заданном объеме пучка масса его находится автоматически, так как масса равна объему, умноженному на отношение массового и объемного коэффициентов. Отсюда следует вывод, что при сравнении поверхностей по массовым характеристикам вообще не следует выбирать условие K=idem. [c.12]

    Оно оценивается, во-первых, в виде био.массы, во-вторых, в виде биоиродукции. Биомасса — это масса живого вещества, существующая в определенный момент времени она рассчитывается на определенный объем, наиример на кубометр морской воды, или площадь, наиример на квадратный метр морского дна. [c.33]

    Л. Малагамба с соавт. осуществил циклическую подачу жидкой фазы и непрерывную - паровой на системе этиловый спирт - вода под атмосферным давлением в колонне диаметром 56 мм с тремя ситчатыми тарелками, межтарельчатое расстояние составляло 500 мм, живое сечение - 21%. При циклической подаче пара и непрерывной подаче жидкости, однако, отмечались следующие недостатки гидравлический удар в начале парового периода, различный уровень жидкости на тарелках, значительное перемешивание жидкости при ее сливе, вместо поршневого движения. Поэтому была изменена схема процесса во-первых, было организовано движение жидкости прерывистое, а во-вторых, цикл начинался с увеличения свободного сечения нижней тарелки с 21% до 75%, при этом скорость пара в сечении колонны падала и жидкость быстро сливалась с тарелки в куб. Пар, минуя тарелку, контактирует с жидкостью на вышележащих тарелках. Такое волнообразное изменение свободного сече- [c.218]

    Данные Цукерманна, приводимые в работе [1гу1п ,1980], подтверждают сказанное. Цукерманн проводил опыты на живых козах во время второй мировой войны и установил, что при избыточном давлении 2,7 - 3,5 МПа во фронте воздушной ударной волны живой организм погибает. Этот результат отличен от данных табл. 10.3, однако данные таблицы относятся к ядерным взрывам, для [c.488]

    Направление второе касается проблемы сжатия денежной массы , проявляющееся для нефтепереработки в низкой денежной составляющей при расчетах. Оплата продукции производится по бартеру, товарными и денежными зачетами, векселями и т.п. Между тем, налоги приходится уплачивать живыми деньгами при явном недостатке собственных оборотных средств у субъектов хозяйствования. Проблема недостатка денежной массы, вероятно, остается наиболее труднорешаемой. Она тянет за собой мног ие иные проблемы, на первый взгляд, посторонние для нефтеперерабатывающей промышленности. Поэтому ее решение потребует больших временных затрат, нежели корректировка налогового законодательства. [c.94]

    Кремний (лат. sili ium) во многих отношениях похож на углерод. В неорганической природе он играет столь же важную роль, как углерод в живой природе. По распространенности в земной коре кремний занимает второе место вслед за кислородом (29% по массе). Во всех природных соединениях он связан с кислородом. 12% массы земной коры составляет кремнезем Si02 и 75% — силикаты, к которым относятся глины, полевые шпаты, слюды, оливины и т. д. Кремний необходим для роста растений. В скелетах некоторых живых организмов (губок) содержится до 88% Si02. [c.136]

    Наибольшая оптическая активность свойственна только живому веществу. В неживой природе возникновение и сохранение ассиметрических соединений или систем с преобладанием одной из эпантиоморфных форм термодинамически очень мало вероятно. Оптически активная система самопроизвольно стремится к состоянию термодинамического равновесия, характеризуемого или отсутствием вообще ассиметрических соединений, или равными концентрациями правого и левого изомера. Чем дальше во времени отстоит данная система от состояния живого вещества, тем статистически менее вероятно сохранение в ней ассиметрии. Приводимые выше данные наглядно иллюстрируют строгое вы-полпение второго закона термодинамики в природе. [c.20]

    Таким образом, образование сернистых соединений можно понимать как вторичный процесс, не связанный с нефтеобразова-нием и, так сказать, параллельный ему. Высказывались и противоположные гипотезы, согласно которым сера является в нефтях унаследованным компонентом и что первоначально образовавшиеся нефти содержат серу как обязательный компонент, исчезающий впоследствии на длинном пути ее превращения. Из этого как будто следует, что серой должны быть богаты геологические молодые нефти, более или менее близкие к исходному веществу нефти, тогда как нефти древние, метановые, могут серы и не содержать. Это соображение плохо вяжется с тем, что очень многие третичные нефти практически серы не содержат, тогда как иногда древние нефти, наоборот, богаты серой. Примерами первых могут служить нефти Баку, Грозного и ряда других месторождений, примерами вторых могут служить сернистые нефти Второго Баку. Вместе с тем исключениями крупного масштаба являются кайнозойские нефти Калифорнии, Мексики и другие, содержащие много серы и бессернистые палеозойские нефти северо-восточных штатов США. Связь между серой и углеводородами нефти часто понималась таким образом, что сера имеет белковое происхождение и должна принимать участие-в тех процессах, которые переводят живое вещество в нефть.. Между техм хорошо известно, что разложение белка связано с выделением серы в виде сероводорода, не принимающего участие в последующих превращениях органического вещества. Ввиду того, что сероводород минерального происхонодения может внедряться в углеводороды, проходя через стадию элементарной серы, нет никакой необходимости отводить белковой сере заметную роль. Все подобные гипотезы отличаются тем, что не объясняют, почему осернение нефти не является обязательным процессом, поскольку в природе имеются значительные месторождения бес-сернистой нефти. Кроме того, в подавляющем большинстве случаев сернистость нефти есть явление региональное, охватывающее громадные области, что говорит о какой-то общей причине явления. Факт восстановления сульфатов микроорганизмами есть. [c.179]

    Из второго закона термодинамики известно, что в изолированной системе происходят самопроизвольные процессы, возрастание энтропии. Это нетрудно понять, если рассматривать биосферу Земли, как многокомпонентную систему, и каждый ее вид (организм), как состояние этой системы. Тогда, в соответствии со вторым началом термодинамики, число микросостояний увеличивается. Иными словами, существует энтропия поликомпонентности (ЭПК), которая является одной из причин эволюции костного и живого вещества и Ифает созидающую роль. Система самопроизвольно стремится увеличить свою разносортность (усилить свое многообразие). Не исключено, что в планетарной биосфере и отдельных биоценозах ЭПК колеблется около постоянного значения и уничтожение высокоорганизованных компонентов. Например, уничтожение млекопитающих увеличит возникновение и рост микроорганизмов и низших существ. Примером является возникновение инфекционных заболеваний даже в благополучных государствах. Система продолжает увеличивать свою разносортность, но это уже происходит за счет повышения многообразия микроорганизмов и простейших форм. Это может вытеснить человека с лица Земли. К сожалению, существующие технологии в земледелии, промышленности и строительстве направлены на уничтожение естественных биосистем и популяций. Идеи, что техника спасет мир — иллюзорны. То, что принимается нами за сферу разума - ноосфера, на деле является техносферой, которая безнравственна, и, в конечном счете, способствует уничтожению цивилизации ее же руками. Мы подобны ослепшему гетевскому Фаусту, который думает, что строит прекрасный город, а на самом деле слуги дьявола - лемуры, копают ему могилу. Поэтому, проблемой самого пристального внимания госу- [c.54]

    Нет никаких сомнений, что большая часть органического и минерального вещества Вселенной сосредоточено в МСС. По данным [60-66], можно выделить различные виды МСС, отличающиеся своей природой (табл. 1.1). Нефти и нефтяные дисперсные системы, газы и газоконденсаты наиболее изученные МСС [53-59]. Экологические системы, которые также относятся к МСС [63], будут рассмотрены во второй части книги. По данным радиоастрономии газопылевые межзвездные облака, занимающие гигантские области Вселенной, содержат в своем составе органические МСС, состоящие из низших углеводородов ряда метана, гетероатомные азотсодержащие и оксосоединения циан, цианоацетилен, аминокислоты [27]. Живые существа создают МСС из продуктов метаболизма и деградации. Технологические процессы также генерируют МСС. Последние образуются в нефтехимических процессах оксосинтеза Фишера-Тропша, каталитическом риформинге, алкилировании, крекинге, пиролизе и т. д. 19,20,58]. Полимеры также являются МСС. Авторами 25] отмечено, что каждую компоненту полимера с определенной молекулярной массой и структурой можно рассматривать как индивидуальное вещество. Любой полимер это стохастическая система, состоящая из компонентов одного гомологического ряда. В отличие от индивидyi льныx компонентов продукты окислительной, фотохимической деструкции полимеров являются типичными МСС. Таким образом, МСС формируются в результате деструкции и синтезе различных веществ. Системы с разной природой компонентов, включающие высокомолекулярные и низкомолекулярные вещества мало изучены. Целесообразно отдельно выделить высокомолекулярные МСС. Свойства таких систем, не менее нем химическая природа, определяют статистический закон распределения состава и вероятность различия компонентов (глава 2). Вероятность различия компонентов характеризует степень химической неодно- [c.6]

    Вторая половина XX столетия характеризуется резко возросшим интересом к познанию механизмов жизнедеятельности. Эпоха наблюдения и достаточно поверхностного анализа мира животных, растений и микроорганизмоп сменилась периодом решительного проникновения на уровень молекулярных и межмолеку-лярных взаимодействий в живых системах, вторжением в биологию методов и подходов физики, химии и математики. Как следствие этого процесса началась постепенная дифференциация наук, изучающих материальные основы жизни стали одна за другой появляться новые дисциплины, отражающие различные уровни исследования живой материи, различные углы зрения, различные экспериментальные приемы и методологические концепции. Классическая биохимия, которой бесспорно принадлежит пальма первенства в симбиозе биологии и точных наук, постепенно уступала дорогу новым направлениям. Вначале, на волне революционных событий в физике, возникла биофизика, значительно окрепшая уже в предвоенный период. Конец этого этапа был ознаменован и резкой активизацией исследований в генетике. Однако наиболее серьезное наступление началось в начале 50-х годов, когда возникли молекулярная биология, рождение которой часто отождествляется с открытием двойной спирали ДНК, а также биоорганическая химия, первые победы которой по праву связывают с установлением структуры инсулина и синтезом первого пептидного гормона — окситоцина, [c.5]

    По реакциям алкилирования аминокислот можно сделать некоторые выводы. Во-нервых, хотя конечный продукт один и тот же, методология его синтеза химическим путем и в живом организме существенно различны. Тем не менее они подчиняются одним и тем же физическим законам термодинамическим законам, законам сохранения вещества и энергии и др. Во-вторых, ирименение химических методов при конструировании соединений, пригодных для биологических систем, составляет основу подхода ири разработке биохимических тестов (т. е. моделей, которые биологи могли бы использовать ири изучении процессов жизнедеятельности), а также нри поиске соединений, обладающих фармакологическим действием (т. е, таких, которые эффективно действуют, направляя патологические химические процессы в нормальное русло). Для достижения этих целей оказались полезными не только реакции алкилирования, но и другие реакции. Наиример, сульфонилироваиие концевой аминогруииы [c.51]

    Степень использования основных фондов и производственной мощности в значительной степени предопределяет экономику предприятия, поскольку нефтеперерабатывающая и нефтехимическая промышленность относится к числу капиталоемких производств и характеризуется относительно небольшими затратами живого труда. В себестоимости продукции затраты на амортизацию и текущий ремонт, как правило, занимают второе место после затрат на сырье. В затратах на обработку они составляют в за-ннсимости от сложности процесса примерно 20—40%. Производительность труда в большей степени возрастает в результате увеличения количества и качества продукции и в меньшей — за счет сокращения численности работающих. Поэтому в ре. ульта-те увеличения выработки продукции на действующих основных фондах возможно значительное снижение затрат на производство, рост производительности труда, прибыли и рентабельности. Улучшение использования действующих основных фондов позволяет уменьшить потребность в капитальных затратах на расширение производства и тем самым обеспечить их экономию. [c.145]

    Биохимическая реакция дегидрирования фенолов. Протекающее в живой клетке одноэлектронное окисление фенолов прииодит к образованию ароксильных радикалов, сочетание которых в димеры является важной биохимической реакцией. Стабильные продукты получаются при С—О- и С—С-сочетании. Первое может происходить в орто- и пара-положениях, второе —в орто-орто-, орто-пара- и пара-иара-положениях, например  [c.1141]

    Применяются самые разнообразные физические трансдьюсеры электрохимические, оптические, термические, пьезоэлекфические, акустические и т.д. В настоящее время наиболее широко используются биосенсоры с электрохимическими преобразователями. Одни из них представляют собой специальный электрод, на который нанесен слой биоматериала, а другие регистрируют ток электрохимической реакции одного из участников ферментативного процесса на поверхности электрода. Первые относятся к потенциометрическим сенсорам, а вторые - к амперометрическим. Функционально биосенсоры сопоставимы с биорецепторами, которые преобразуют реакцию живых организмов на воздействие окружающей среды в электрические сигналы [c.292]

    В течение суток протекает основной биологический (циркад-ньи ) никл протяженностью 24 ч (с вариациями от 21 до 28 ч). Нередко отчетливо проявляются кратные части этого цикла длите тьностью 4, 8, 12, 18, 36 и 48 ч. Эти циклы сочетаются с лунными (время между двумя прохождениями Луны через меридианы местности— 24, 8 ч — и астрономическими сутками 23,9 ч). У некоторых видов живого четко выделяются два периода экстремальной двигательной активности в течение циркадного цикла (первый 12-Ч с максимальной активностью второй 12,4-ч — минимальный). Каждые 15 сут эти ритмы сходятся и образуют максимум в двигательной активности. [c.52]

    Биолог. Я полностью согласен с Врачом, но кое-что хоч> еще добавить. Взгляните вновь на табл 6.5. Из нее видно, что Живая Температура Населения в России за 1938-1958 гг понизилась особенно резко - на целых 7% за 20 лет Для сравнения с 1896 по 1938 г. она понизилась всего на 3%, а за 1958-1989 гг. - на 4%. Так чем же печально знаменит этот период - 1938-1958 гг. Наверное, тем, чго на него приходится вторая мировая война с тяжелейшими последствиями именно для народа России. [c.150]

    Приняв за ширину таблицьЕ длину коротких периодов (восемь клеток), он сделал систему жесткой, неподатливой к развитию вправо. Чтобы вместить последующие, более ем кие периоды в прокрустово ложе короткой формы таблицы, их пришлось расчленять по живому телу , лишая естественности. На едином ряду химических элементов убедительно видна натуральная длина каждого периода, а также хорошо обозначены места естественной стыковки периодов. Таким образом, и вторую систему Менделеева только с большой натяжкой можно назвать естественной. Как ни парадоксально, но он упорно избегал нумерации химических элементов. И уж совсем кажется капризом истории, что этот ряд впоследствии назван Менделеевским рядом химических элементов . Хотя его родоначальником по праву является Гладсон. [c.57]


Смотреть страницы где упоминается термин Живые вторая: [c.74]    [c.49]    [c.189]    [c.494]    [c.90]    [c.9]    [c.29]    [c.59]    [c.297]   
Обрезка растений (1987) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Второе начало термодинамики и живые организмы

Второй закон неприменим к живым организмам

Таблица 22. Концентрация второго рода химических элементов живым веществом



© 2025 chem21.info Реклама на сайте