Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Капли применение

    Казалось бы, что неустойчивость эмульсий связана прежде всего с избытком межфазной свободной энергии и, следовательно, эмульгаторами должны быть ПАВ, снижающие а на границе раздела фаз. Действительно, добавки ПАВ увеличивают продолжительность существования эмульсии (до расслоения), а также время жизни отдельной капли. Применение ПАВ в некоторых случаях снижает а настолько, что происходит самопроизвольное диспергирование с образованием истинно лиофильных бесконечно устойчивых эмульсий (см. гл. ХУП) к ним относятся, например, эмульсолы (смазочно-охлаждающие эмульсии ). [c.309]


    Крацевание производится обычно вращающимися щетками из стальной или латунной проволоки либо пластмассовыми. В качестве смазочных веществ служат вода или масло, в которые часто добавляют смазывающий порошок определенной дисперсности. Смазка в процессе-крацевания подается медленно, каплями. Применение смазочных веществ уменьшает потери материала от истирания. [c.664]

    Наиболее полно удовлетворяют основным агротехническим требованиям аэрозольные генераторы. Они создают из рабочей жидкости аэрозоли (мельчайшие капли). Применение аэрозольных генераторов на химической прополке дает высокую эффективность, при этом обеспечивается равномерное распределение гербицидов по поверхности растений, а также снижается трудоемкость и стоимость работ. [c.59]

    Возможность применения вторичного пара для повторного обогрева зависит от чистоты пара. Загрязненный пар, содержащий капли корродирующих веществ или механические примеси, не может быть использован в полной мере. [c.274]

    Центробежные форсунки с завихрителями. При орошении полых колонн используют не только гидравлически гладкие центробежные форсунки, но и центробежные форсунки, снабженные вкладышами — завихрителями разной конструкции, создающими такой же, как и у гладких форсунок, полый (незаполненный каплями внутри) конический факел разбрызгивания. Применение вкладышей обусловлено тем, что число, направление и площадь живого сечения их каналов определяет (при данном диаметре выходного отверстия сопла) корневой угол раскрытия факела (см. выше), а также пропускную способность форсунки при ее конструировании. Наибольшее распространение получили вкладыши, выполняемые в виде червячного (с числом заходов от одного до четырех, а иногда и более) завихрителя очень небольшой высоты (см. рис. 81) [увеличение высоты вкладыша и протяженности его витков способствует лишь возрастанию потерь напора и падению момента закрутки], а также вкладыши в виде дисков (рис. 88) или грибков (рис. 89, а), а иногда и кольцевых венцов (рис. 93, а—г) с тангенциальными прорезями, направляющими жидкость [c.236]

    Колбу соединяют с обратным холодильником, ставят на водяную баню или электрическую плитку с закрытой спиралью и содержимое колбы кипятят 30 мин. При испытании масел с жировыми присадками при ориентировочном испытании масла с неизвестным числом омыления содержимое колбы кипятят 60 мин. По-истечении указанного времени нагрев колбы прекращают, промывают внутреннюю трубку холодильника 5 мл спирто-толуольной смеси и дают ей стечь в течение 2 мин. Затем в колбу добавляют 1 мл раствора фенолфталеина или щелочного голубого 6В и сразу же в горячем состоянии содержимое колбы титруют раствором соляной кислоты соответствующей концентрации сначала со средней скоростью, затем замедленно, слегка перемешивая содержимое колбы. После исчезновения илн изменения окраски, которая замечается в конце титрования, добавляют в колбу 1—2 капли раствора соляной кислоты и оставляют колбу на 30 с, слегка перемешивая содержимое колбы несколько раз. При применении в качестве индикатора фенолфталеина отсутствие окрашивания в течение 30 с, а при применении щелочного голубого 6В появление синей или сине-зеленой окраски указывает на конец титрования. [c.179]


    Для получения поляризационных кривых полярограмм) в этих методах пользуются в качестве катода струей ртути, непрерывно по каплям вытекающей из отверстия, а в качестве анода применяется электрод с большой поверхностью, обычно тоже ртутный. Ток применяется очень слабый, порядка 10 а. Анод, вследствие большой поверхности его и связанной с этим малой плотности тока, практически не поляризуется. Поэтому налагаемое напряжение расходуется лишь на поляризацию катода и на прохождение тока через раствор. В результате, измеряя силу тока при различных напряжениях, можно определять поляризацию на катоде. Различного вида ионам свойственны разные потенциалы их восстановления на катоде. Применяя среды кислые, нейтральные или щелочные, можно охватить все важнейшие виды ионов, выполняя как качественный, так в определенных условиях и количественный анализ раствора. Полярографический метод является очень чувствительным и дает возможность обнаружить и часто приближенно определить составные части, содержащиеся в очень малой концентрации. Полярографический метод находит применение в различных работах, где используется катодное восстановление.  [c.449]

    Другой метод электрообезвоживания масел основан на использовании неоднородного электрического поля, в котором капли воды перемещаются в нанравлении градиента напряженности поля [65]. Перемещение капель происходит вследствие неодинаковой диэлектрической проницаемости воды и масла и, следовательно, разной их поляризуемости. Силы, действующие на капли водьг можно определить по формуле (7.26). Этот метод, не нашедший еще широкого применения, способен обеспечить гораздо более глубокое обезвоживание нефтепродуктов, чем методы, основанные на слиянии поляризованных капель, когда при достижении достаточно низких концентраций воды в масле (менее 0,1%) расстояния между каплями становятся столь значительными, что их укрупнение затрудняется, [c.176]

    Полученные выводы о снижении эффективности использования деэмульгатора при его разбавлении водой полностью совпадают с существующими рекомендациями по применению деэмульгаторов, в которых особо подчеркивается, что деэмульгатор должен подаваться в концентрированном растворе. Чтобы избежать разбавления деэмульгатора промывочную воду надо подавать после растворения деэмульгатора и разрущения им бронирующих оболочек на каплях пластовой воды. [c.156]

    Наложение на поток эмульсии направленных пульсаций сообщает каплям воды энергию, достаточную в ряде случаев для слияния их друг с другом, при этом частота столкновений существенно увеличивается. Применение пульсаций заданной интенсивности повышает управляемость процессами дробления и коалесценции капель и позволяет выбрать оптимальный режим разделения эмульсии в зависимости от ее физико-химических свойств и геометрических размеров внутренних устройств пульсационного аппарата. [c.52]

    Наиболее эффективным из существующих методов улавливания сернокислотного тумана является очистка в мокрых электрофильтрах. Однако эти аппараты представляют собой громоздкие, дорогие, трудно обслуживаемые сооружения. Другой метод — барботаж газа через слой жидкости. При прохождении пузырьков газа (с каплями тумана в них) через слой жидкости поверхностные пленки пузырьков непрерывно деформируются и поэтому происходит интенсивное поглощение капель. Однако в сравнении с электрофильтрами применение барботажных аппаратов менее рентабельно из-за большего расхода электроэнергии на протягивание газа и меньших к. п. д. [c.182]

    В том случае, когда конденсация происходит на кожухе горизонтального кожухотрубного теплообменника, конденсат естественно стекает вниз с одной трубы на другую. Хотя падающие капли генерируют турбулентное движение пленки конденсата, этот эффект не компенсирует эффект увеличения толщины пленки, поэтому в целом теплообмен ухудшается. Как правило, необходимо стремиться к возможно более быстрому удалению конденсата с поверхности, что достигается, например, применением рифленых или гофрированных поверхностей. Эксперименты показывают, что использование вертикальных труб с желобками на их поверхности вместо гладких вертикальных позволяет увеличить коэффициент теплоотдачи до 5 раз. [c.96]

    Когда в газовый поток добавляют капли жидкости, вследствие заметного нагрева двухфазной смеси, испарения жидкости и разрушения пограничного слоя возрастает перенос теплоты. В 45] показано, что, если на нагреваемой поверхности образуется непрерывная пленка жидкости, коэффициенты теплоотдачи могут вырасти в 30 раз. Более практичный способ интенсификации теплообмена предложен в [46], где применяется охлаждение разбрызгиванием в центральной зоне компактного теплообменника. Увеличение коэффициентов теплоотдачи максимально иа 40% связано с образованием жидкой пленкн и ощутимым ее нагревом. Вообще же большие требуемые объемы жидкости приводят к ограничениям в практическом применении этого метода. [c.326]


    Третья фаза горения определяется количеством подаваемого по времени топлива. Сгорание топлива в этой фазе происходит вблизи поверхности испаряющихся капель при выходе их из сопла форсунки. Эта фаза сгорания будет проходить нормально только в том случае, если во второй фазе горения температура и давление в камере достигли определенного уровня. Для этой фазы горения очень большое значение имеет относительная скорость капель топлива и воздуха, повышение которой достигается высоким давлением впрыска и применением разделенных камер. В предкамере развиваются первая и вторая фазы горения. Под давлением, возникшем в предкамере во вторую фазу горения, пары и капли несгоревшего топлива выталкиваются в основную камеру с такой скоростью, какую невозможно создать механическим распылителем. [c.37]

    В другом случае при применении фильтра в режиме высокого давления (1500 кПа) капли масляного аэрозоля удаляли из воздуха за третьей ступенью поршневого компрессора перед подачей газа в воздухоподогреватель. Воздух, выходящий из компрессора при 120 °С, представляет собой взрывоопасную среду, если в нем содержатся капли масла при 315 °С [519]. Предложенная система продемонстрировала также удовлетворительную работу в сочетании с установками сульфирования и хлорирования, а также в технологических схемах с участием паров азотной кислоты и газов [c.376]

    Наиболее важным из этих факторов является удельное сопротивление частиц, которое определяет возможность применения электростатического осаждения для каждого конкретного случая, связанного с проблемой пылеудаления. Когда частицы или капли попадают на осадительный электрод, они частично разряжаются и прилипают к нему под воздействием молекулярных адгезионных сил типа Лондона-Ван-дер-Ваальса, сил поверхностного натяжения вследствие присутствия влаги и электростатических сил. Степень электростатической адгезии зависит от скорости, с которой [c.463]

    Широкое распространение при обезвоживании нефтепродуктов получили методы, основанные на применении пористых перегородок (фильтрационные методы) Отделение свободной воды в пористых перегородках, обладающих гид рофильными свойствами, происходит за счет впитывания фильтрующим материалом влаги до полного его насыщения. Перегородки, изготовленные из гидрофобных материалов, проницаемы для нефтепродуктов, но не пропускают содержащиеся в нем капли воды. Обычно в сепараторе фильтра предусматривается использование трех последовательно установи ленных перегородок  [c.99]

    При интерпретации экспериментальных данных фактор взаимодействия часто игнорируют, что приводит к необоснованным заключениям. Иллюстрацией этого служит простой пример. Две эмульсии с различными объемными концентрациями Ф дисперсной фазы приготавливают из одинаковых ингредиентов с применением одного и того же метода предварительного смешения и гомогенизации. Затем сравнивают их вязкости т] в широкой области скоростей сдвига. Непосредственные заключения, касающиеся влияния Ф на "п могут быть сделаны только в том случае, если будет показано, что средний размер капель и распределение размеров около среднего значения являются одними и теми же для обеих эмульсий. Однако, возможно, что более концентрированная эмульсия будет иметь больший средний размер капель и более широкое распределение размеров. В этом случае эффекты, связанные с Ф и размером капель, действуют одновременно. Поэтому, если не будут сделаны некоторые поправки, наиболее интересующий фактор не может быть изучен. В общем, действующие факторы оказывают больший эффект, когда Ф увеличивается, т. е. когда капли расположены ближе друг к другу и создается, больше точек контакта. [c.262]

    Подобным образом ведет себя монолаурат сорбитана. Если эмульсии [/В приготовлены с 1,5—6,0% монолаурата сорбитана, диспергированного в водной фазе, капли дисперсной фазы появляются при более высокой концентрации последней их число, размер и структурная сложность возрастают, когда концентрация эмульгатора увеличивается. При Ф = 0,727 и 6,0% эмульгатора эмульсия обращается при более низкой концентрации дисперсной фазы, чем в случае применения меньших концентраций эмульгатора. Это сопро- [c.290]

    В некоторых эмульсиях В/М капли имеют -потенциал, равный 100 мв, так что мог ожидаться первый электровязкостный эффект. Однако эмульсии (Ф == 0,03—0,33), содержащие различные эмульгаторы и имеющие -потенциалы от 15 до 100 мв, нри применении уравнения (IV.206) к данным вязкости (Альберс, 1957) дали примерно одно и то же значение а . Величина первого электровязкостного эффекта, полученная по уравнению (1У.250), равна — 1%. Таким образом, эффект был мал в системах с низкой диэлектрической постоянной. В эмульсиях В/М толщина двойного электрического слоя составляет несколько микрометров, так что в более концентрированных эмульсиях мог ожидаться второй электровязкостный эффект. Но так как двойной слой является очень диффузным, увеличение вязкости, вызванное последним эффектом, должно было бы быть также малым. [c.297]

    Переменноточное поляризационное титрование с двумя электродами из висящей ртутной капли. Применение к хелатоме-трическому титрованию кадмия. [c.215]

    Использование прибора в качестве конструктивного элемента (например, центровочного груза) — это прием, азбучный для ТРИЗ. Если этот прием оказался неожиданным , наверняка он не был применен в более тонких и не столь очевидных случаях. К тому же это всего-навсего один прием — капля в океане смелых и неожиданных идей современной теории решения изобретательских задач. [c.15]

    На рис. 4, г показано изменение средней эффективности одного изобретения, т. е. размер даваемой им экономии. Великие изобретения пятого уровня и первые крупные и средние изобретения, превращающие новый принцип в отрасль техники, поначалу не дают прибыли, они убыточны. Прибыль появляется потом, когда новая машина находит массовое применение. Тогда любая мелочь дает большую экономию. Пример сотрудники Института электросварки им. Е. О. Патона заменили пайку бокового вывода к цоколю лампы автоматизированной сваркой. Экономится лишь капля припоя. Замена пайки сваркой давно стала типовым приемом. Как максиму , это — изобретение второго уровня, а скорее всего — %неизобретательское изобретение . Но в целом по стране экономия составляет окола миллиона рублей в год, хотя лампа осталась старой, т. е. ненадежной и крайне неэкономичной системой. [c.53]

    Массообмен в зоне отрыва можно приближенно рассчитать, вос-пользовавишсь для функции тока в кормовой области сферы разложением типа (4.101). При этом формально считается, что в зоне отрыва образуется диффузионный пограничный слой и что в точке набегания потока со стороны отрывной зоны (точка т = тг) концентрация вещества равна концентрации вдали от сферы. Полный диффузионный поток определяется суммой потоков в пограничных слоях до точки отрыва и в зоне отрьганого течения. Такой приближенный способ учета массообмена в вихревой зоне был применен в работах [281, 286]. Следует однако отметить, что он носит весьма условный характер, так как ввиду наличия циркуляции жидкости в вихревой зоне граничное условие постоянства концентрации вдали от капли для этой области не вьшолняется. На рис. 4.11 кривая/характеризует массообмен твердой сферы. Штриховая часть этой кривой соответствует решению без учета массообмена в зоне отрыва. Заметим, что при фиксированных значениях Ре с изменением Ке от 0,5 до 100 коэффициент массообмена для твердой сферы возрастает примерно в 1,6 раза. На рис. 4.11 приведены также экспериментальные данные Гриффита [287] для капель с отношением вязкостей i =0,38 0,42 и 2,6. Для твердой сферы и капель жидкости в газовом потоке для массо- и теплообмена опытные данные в ряде работ [288-291] обрабатьшались в виде корреляционной зависимости  [c.201]

    При многоярусном расположении форсунок расстояние между ярусами / = 2,5-1-3,0 м можно считать достаточным, так как время полета каиель факела [128] при обычно применяемых напорах Я= 154-25 м прн этом достаточно велико. Так, ио данным работы [39] при абсорбции хорошо растворимых газов (Яf) время т практически полного насыщения одной капли диаметром 2 мм составляет 0,1 с. По данным работы [7], увеличение / между ярусами форсунок охладительных градирен более 3,5—4 м не дало заметного эффекта, так как основная доля передачи тепла приходится на участок формирования факела капель вблизи сопла форсунки. Применение сдвоенных форсунок в одном или нескольких ярусах орошения башни (см. рпс. 66, а, л одна форсунка факелом вверх, другая — факелом вниз) позволяет увеличить степень заполнения реакционного объема аииарата, причем междуярусное расстояние можно ие изменять, поскольку с учетом дивергенции траектории иолета каиель взаимного наложения факелов можно не опасаться. [c.208]

    Первое сообщение о спонтанной турбулентности на поверхности контакта двух жидких фаз сделали в 1953 г. Льюис и Пратт [651. Дальнейшие исследовательские материалы, подтверждающие первые наблюдения, были опубликованы Льюисом [641, Гарнером [35], Зигвартом и Нассенштейном [85, 861, а также Шервудом и Веем [941. Наблюдения проводились на каплях, погруженных в другую жидкость, или на плоской поверхности контакта двух фаз. Явления фотографировались с применением соответствующего увеличения и освещения или снимались на кинопленку с частотой до 40 кадров в секунду. Капля по отношению к окружающей жидкости задавалась третьим компонентом, который во время наблюдений переходил через поверхность касания в другую фазу. Установлено, что прохождение растворенного компонента может давать очень различные картины, как это показано на рис. 1-27. Это увеличенные фотографии конца капилляра 1 с каплей 2 (источник света 5), окруженной жидкостью 4. Фотографировалась система, в которой капли были образованы раствором уксусной кислоты в четыреххлористом углероде, а окружающей жидкостью была вода. Концентрация кислоты составляла 1—10%, На рис. 1-27, а при концентрации кислоты 1 Ч,, с обеих сторон капли видны контуры правильного слоя, через ко- [c.56]

    Исследования массообмена, проведенные Шервудом [911 с системами бензол или метилизобутилкетон—уксусная кислота—вода, доказалн, что для экстрагирования из капли или в каплю особенное значение имеют первый и последний периоды, Шервуд показал, что за первый и третий периоды проходит около 40% экстрагируемого вещества, остальное—за период свободного движения капли, причем удлинение пути капли вызывает все уменьшающийся прирост экстрагирования. Лихт и Конвей [671 подтвердили факт, что количества экстрагированного вещества за период образования капли и за период слияния приблизительно равны, но в сумме они меньше, чем показал Шервуд. При применении в качестве растворителей изопропилового эфира, этилацетата и метилизобутилкетона (а в качестве рафината—водного раствора уксусной кислоты) экстра- [c.84]

    В настоящее время распространенной технологией получения силикагеля и алюмосиликагеля является коагуляция в капле. При этом частицы катализатора получаются в удобной для бо ьпгин-ства процессов сферической форме. Кроме того, метод коагуляции в капле дает возможность легко организовать производство катализатора по непрерывной схеме, а также избежать применения формовочных машин. Применительно к алюмосиликатному катализатору технология производства по методу коагуляции в капле (рис. У.2) сводится к следующему [3, 4]. [c.177]

    Оценка коалесценции капля—поверхность раздела и капля— капля основывается на исследовании процесса утончения разделяющей пленки сплошной фазы. Однако время коалесценции может существенно отличаться от времени утончения пленки. Было обнаружено [36], что для систем с одним и тем же размером капель н одинаковым временем стенания пленки время коалесценции может существенно различаться. В этом случае возникает вопрос, может ли явление коалесценции интерпретироваться с помощью моделей утончения пленок сплошной фазы Ряд исследований показывают, что такая оценка обладает следующими недостатками 1371 а) не определена ладежность применения этих данных к реальным процессам, таким, как разделение эмульсий б) неизвестно, насколько применимы данные для систем с заданньш уровнем примесей. [c.291]

    Ритема рассматривал процесс в раздробленных каплях жидкости, находящейся в макросостоянни, и обнаружил, что кинетические зависимости реакции нулевого порядка в дисперсной фазе могут быть достаточно точно аппроксимированы характеристиками систем, взаимодействующих в диффузионной области. Карл° продолжил указанные исследования с применением капель, образующихся при прерывании изолированной струи. Как и следовало ожидать, с увеличением частоты слияния капель реагирующих жидкостей, результаты приближались к данным, полученным при изучении жидкости в микросостоянии. Итоги исследований были представлены авторами в виде семейства кривых, аналогичных кривым Х-5, причем частоту слияния капель принимали в качестве параметра графика. [c.314]

    На рис. 14,6 пpивeдeнf>I кинокадры, отображающие изменение эмульсии под воздействием постояннйго электрического поля с характерным скоплением капель вблизи фигурного электрода. Эти кадры получены при подключении электрода к минусовому вьшоду вьшрямителя. Такие же изменения со скоплением капель около фигурного электрода происходят и при его подключении к плюсовому выводу. Перемещение капель в сторону фигурного электрода, наблюдаемое в обоих случаях, независимо от знака заряда электрода, связано с тем, что собственные заряды капель невелики, их взаимодействие с полем незначительно и на капли действуют в основном только силы, обусловленные неоднородностью электрического поля. Под влиянием этих сил капельки и втягиваются в зону большей непряженности поля. Под влиянием этих же сил капельки перемещаются в сторону большей напряженности поля и при применении переменного поля - рис. 14, д. [c.59]

    Только для легких нефтей, эмульгаторы которых не образуют прочных бронирующих оболочек на каплях воЩ 1, возможно обессоливание с применением электрополя без дополнительной подачи деэмульгатора. Для решения вопроса о возможности такого обессоливания необходамо проконтролировать не только содержание солей в обессоленной нефти, но и концентрацию нефтепродуктов в дренажной воде. [c.138]

    Бензин и бензол нужно подогревать на водяной бане с электрообогре-В0Л1. Применять огневой подогреватель не разрешается из-за пожарной опасности. Плотность применяемого бензола q 4 = 0,878—0,882 капля бензола, нанесенная на фильтровальную бумагу, после испарения не должна оставлять масляного пятна. Все растворители перед применением должны быть профильтрованы. [c.27]

    Различие между фильтрованием твердых частиц и капелек аэрозоля заключается в том, что лри улавливаиин аэрозоля нет необходимости в применении методов встряхивания или каких-либо других способов удаления частиц, так как капли сливаются и стекают с фильтрующих поверхностей. В конструкции фильтра для улавливания аэрозолей должно быть предусмотрено устройство дренажа уловленной жидкости. [c.373]

    Распылители с вращающимся диском, с помощью которого осуществляется выброс капелек жидкости после того, как они разгоняются на нем до высокой скорости (рис. 1Х-11). Диск приводится в движение гидравлическим или механическим способом, а жидкость перемещается в радиальном направлении по трубкам или по плоской поверхности диска. Образующиеся капли жидкости имеют одинаковый размер, который можно регулировать путем изменения скорости вращения диска и расхода жидкости. В связи с этим рас- пылители наиболее удобны в тех случаях, когда необходимо получить капли жидкости для фундаментальных исследований. Подробное описание койструкции распылителей приведено в отдельных изданиях [280]. В настоящее время центробежные распылители этого типа не применяются в промышленных скрубберах, но они могут найти применение при разработке новых видов скрубберов, где необходимо получение капель примерно одинакового размера. [c.404]

    В последние годы для промышленного применения было разработано еще несколько установок скрубберного типа с трубами Вентури. Одной из таких установок является скруббер с погружным диском, разработанный фирмой Рисерч Коттрелл (рис. 1Х-28). Круглый диск, установленный коаксиально в коническом вертикальном пылеприемном отсеке, заливается жидкостью, которая сталкивается с распределительным конусом. В это время газы, пересекая диск и проходя по окружности секции, разбивают жидкость сдвигающим усилием на капли размером 50— 150 мкм. Диск может приводиться в движение вручную или автоматически с тем, чтобы в условиях изменяющейся объемной скорости прохождения газов поддерживать на постоянном уровне скорость среды в кольцевом пространстве. Диаметр промышленной установки колеблется от 0,3 до 2 м, высота Я от 2 до 6,5 м, [c.422]

    Для хранения нефтепродуктов, характеризующихся высоким давлением паров (до 0,2 МН/м2), возможно применение каплевидных резервуаров, названных так из-за внешней формы, напоминающей форму капли жидкости на несмачнваемой плоскости. Общий вид такого резервуара показан на рис. 1У-7, Форма оболочк кап- [c.111]

    Тонко раздробленные пигменты также мигрируют к границе раздела масло — вода и образуют защитный слой вокруг капель. Все водные окислы (напрпмер, гидратированные формы пятиокиси ванадия, окиси железа и алюминия) поверхностно активны. Поэтому, помимо некоторого увеличения вязкости свежеприготовленной эмульсии, происходящего в процессе их применения, может наблюдаться дальнейший ее рост во время хранения, вызванный прогрессирующей гидратацией окислов. В конце концов, вокруг каждой капли образуется слой геля. Примером могут служить концентрированные эмульсии В/М, в которых окись алюминия (глинозем) размешана в водной фазе (Шерман, 1955с). Когда к водной фазе добавляют пропиленгликоль до концентрации 20%, эти изменения замедляются в зависимости от концентрации пропиленгликоля. При более высоких концентрациях пропиленгликоля образование слоя геля полностью подавляется. Другие полиспирты оказывают тот же эффект. [c.298]


Смотреть страницы где упоминается термин Капли применение: [c.281]    [c.281]    [c.368]    [c.62]    [c.193]    [c.72]    [c.9]    [c.405]    [c.435]    [c.42]    [c.92]    [c.286]   
Фармацевтические и медико-биологические аспекты лекарств Т.2 (1999) -- [ c.156 , c.158 , c.159 ]




ПОИСК





Смотрите так же термины и статьи:

Капли



© 2025 chem21.info Реклама на сайте