Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органеллы ферменты

Таблица 12 Маркерные ферменты клеточных органелл Таблица 12 <a href="/info/1379032">Маркерные ферменты</a> клеточных органелл

    Наружные мембраны клеток отличаются от внутренних по липидному составу (последние почти не содержат стеринов, имеют соотношение ФХ/ФЭ > 1) и обладают специфическим набором ферментов и рецепторов. Как правило, белки плазматических мембран со стороны внеклеточной среды обильно гликозилированы. Внутриклеточные мембраны содержат мало гликопротеинов и гликолипидов и характеризуются меньшей микровязкостью. Благодаря этому они могут образовывать органеллы малого размера. Мембранные белки выполняют различные специфические функции рецепторные, транспортные, ферментативные, энергопреобразующие и т.д. (см. далее). [c.303]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    Митохондрии — сферические или удлиненные внутриклеточные органеллы, богатые различными ферментами. Они выполняют различные функции осуществляют окислительные реакции, являющиеся источником энергии переносят электроны по цепи компонентов, синтезирующих АТФ катализируют синтетические реакции, идущие за счет АТФ производят синтез митохондриальных белков. [c.250]

    Органеллы Ферменты и ферментативные комплексы [c.120]

    Лизосомы представляют собой пузырьки, окруженные одиночной мембраной и содержащие полный набор ферментов для расщепления практически любого компонента клетки. Лизосомы, по-видимому, образуются из мембран Гольджи. В клетках, способных захватывать частички пищи (например, у амеб), лизосомы являются источником ферментов для ее расщепления. Лизосомы переваривают также отработанные или излишние клеточные компоненты, в том числе митохондрии. Лизосомы — жизненно необходимые клеточные органеллы [23, 24] некоторые серьезные болезни человека обусловлены отсутствием именно, специфических лизосомных ферментов. [c.34]


    Хотя главная роль и принадлежит ядру, есть данные о том, что взаимодействие генетических систем ядра и митохондрий происходит в обоих направлениях. Например, если в интактной клетке блокировать митохондриальный синтез белка, то будет наблюдаться повышенное образование переносимых в органелл> ферментов, участвующих в синтезе митохондриальных ДНК. РНК и белков, как будто клетка пытается преодолеть эту блокаду. Природу сигнала, посылаемого от митохондрий к ядру, еще предстоит выяснить. [c.497]

    Важная особенность этого метода состоит в том, что добавление фермента в реакционную смесь во время образования геля сводит дезактивацию фермента к минимуму. Далее, ковалентное присоединение фермента к гелю обеспечивает а некоторой степени защиту от протеаз. Эта процедура проста и универсальна она может быть прямо использована для многих ферментных систем, а также для иммобилизации целых клеток и органелл. Наконец, гель может быть приспособлен для магнитной фильтрации, если при образовании геля использовать железосодержащую жидкость. [c.258]

    Растворимая фаза хлоропластов, или строма, представляет собой белковый гель, в котором концентрация белка может достигать 300 мг/мл [26], где присутствуют также нуклеиновые кислоты, рибосомы и ряд ферментов, катализирующих реакции метаболизма этих органелл (более детальные сведения см. в [17]). [c.242]

    Пусть для осуществления химической реакции веществу необходимо продиффундировать в некоторую частицу, которой может быть гранула с иммобилизованным ферментом, клетка растительного или животного происхождения, клеточная органелла, зерно гетерогенного катализатора и т. д. В этом случае э( фективная скорость химической реакции равна произведению истинной скорости на диффузионный фактор т). В свою очередь т] есть функция модуля Тиле (Ф), который определяется соотношением [c.270]

    Лизосомы —закрытые мешочки, содержащие ферменты, каталитическое действие которых регулируется мембранами (оболочками) этих органелл. При разрыве оболочки лизосомы ферменты проникают в цитоплазму и вызывают растворение клетки. [c.250]

    Экспериментальные приемы, применяемые в биохимии для изучения метаболизма, разнообразны. Исследования химических превращений проводятся на уровне целых органов, в тонких срезах и клеточных культурах, в гомогенатах тканей, органелл и очищенных ферментов. В любом эксперименте важную роль играют методы количественной регистрации химических превращений. Гравиметрические методы недостаточно чувствительны и часто непригодны для анализа органических соединений. Поэтому в биохимии широко применяются спектрофотометрические и колориметрические методы, имеющие высокую чувствительность и позволяющие определять очень небольшие количества веществ. Некоторые превращения сопровождаются поглощением или выделением газа. Для количественной регистрации таких превращений применяются манометрические методы. [c.5]

    Изучение большого числа протекающих в митохондриях процессов может быть успешно проведено как с изолированными органеллами в качестве источника фермента, так и с высокоочищенными препаратами соответствующих митохондриальных ферментов. Однако второй подход практически неприемлем для изучения реакций, непосредственно сопряженных с функционированием системы трансформации энергии в митохондриях. В первую очередь это относится к процессу окислительного фосфорилирования, который с высокой эффективностью протекает и может быть изучен либо в изолированных (интактных) митохондриях, либо в специальным образом полученных препаратах субмитохондриальных частиц. В этом случае также важно убедиться в том, что скорость изучаемой реакции линейно зависит от концентрации катализатора (от концентрации общего белка митохондрий или субмитохондриальных частиц). Измерение скорости окислительного фосфорилирования и термодинамической эффективности (отношение АДФ/О) традиционно проводится и предшествует изучению любых митохондриальных функций. [c.465]

    Если внутренний электролит амперометрического датчика отделить от анализируемого раствора мембраной, содержащей биологический материал ферменты, ткани растений и животных, бактерии, дрожжи, антигены/антитела, липосомы, органеллы, рецепторы, ДНК, то такой датчик приобретает специфическую чувствительность к определяемым компонентам. На рис. 14.2 приведена 498 [c.498]

    Микроорганизмы могут использоваться в качестве биосенсоров и других научных инструментов. Биосенсор — это гибридный прибор, где живые организмы (органеллы, ферменты) связаны с электродами, и биологическая реакция конвертируется в электрический ток. Биосенсоры применяют при определении различных индивидуальных вешеств, поллютантов, контроля газов и жидкостей в медицине, сельском хозяйстве, экологических исследованиях и различных производствах. Примером может служить биосенсор для определения загрязнения (токсичности) на основе люциферазной системы светящихся бактерий. [c.316]


    Уравнение (6.30) дает значение объема 1,4-10" см , который соответствует объему куба с ребром 2,4 мкм. Если мы сопоставим эту величину с объемом клетки (см. табл. 1-2) или органеллы, то увидим, что объем, захватываемый молекулой фермента за 1 с, составляет довольно заметную часть объема небольшой по размеру клетки, митохондрии, хлоропласта и т. д. [c.16]

    Биосинтез большой субъединицы контролируется ДНК хлоропластов он осуществляется на рибосомах этих органелл. Малая субъединица синтезируется в форме предшественника с более высокой изоэлектрической точкой при посредстве ядерной ДНК и на рибосомах цитоплазмы. Этот положительно заряженный предшественник взаимодействует с оболочкой хлоропластов, которая имеет отрицательный заряд [47], затем проникает через оболочку и теряет положительно заряженный пептид перед тем, как соединиться с большими субъединицами для образования активного фермента. [c.243]

    В гл. 1 уже говорилось о то.м, что практически все функции нейронов в большей или меньшей степени обусловлены свойствами мембран. В частности, мембранную природу имеют такие явления как распространение нервных импульсов, их электрическая или химическая передача от клетки к клетке, активный транспорт ионов, клеточное узнавание и развитие синапса, взаимодействие с нейромодуляторами, нейрофармакологическими веществами и нейротоксинами. Такой, несколько односторонний взгляд уточняется в настоящей главе рассмотрением цитоплазмы нейронов. Хотя в основном она сходна с цитоплазмой других клеток — в ней обнаружены те же органеллы (а также синаптические везикулы) и ферменты (и, кроме того, участвующие в метаболизме медиаторы), однако нейрональная цитоплазма адаптирована специфическим образом именно к функциям нейронов. [c.303]

    Наиболее детально вопрос о распределении биохимических процессов между клеточными органеллами изучен на примере митохондрий. Главным назначением митохондрий является окислительное фосфорилирование. В митохондриях происходят такие процессы, как цикл трикарбоновых кислот, окисление жирных кислот, собственно окислительное фосфорилирование и некоторые другие превращения, о которых будет сказано ниже. Системы, осуществляющие перечисленные процессы, распределены между различными отделами митохондрий. Так, комплекс белков, осуществляющих перенос электронов от NAD-Н к молекулярному кислороду и сопряженное фосфорилирование АДФ, полностью вмонтирован во внутреннюю митохондриальную мембрану. Цикл трикарбоновых кислот функционирует в митохондриальном матриксе, за исключением стадии дегидрирования сукцината, которое осуществляется с помощью сукцинат дегидрогеназы, также входящей в состав внутренней мембраны. Пируватдегидрогеназный комплекс и система ферментов, катализирующих окисление жирных кислот, поставляющие ацетил-СоА в цикл трикарбоновых кислот, целиком сосредоточены в матриксе. [c.433]

    Кроме этих органелл уже упоминались лизосомы - окруженные мембранами образования, содержащие набор гидролаз и обеспечивающие гидролитическое расщепление поступающих в клетку биополимеров. В отдельные структуры заключены ферменты, которые катализируют оксидазные реакции, приводящие к образованию пероксида водорода, и содержат каталазу для его уничтожения. Эти органеллы получили название пероксисом. [c.434]

    Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo. [c.16]

    При выделении органелл и последующей работе с ними опираются на маркерные структ)фы, топологически привязанные или ассоциирующиеся с ними Чаще всего такими маркерами являются ферменты (таблица 12) [c.135]

    Все митохондриальные ферменты, о которых говорилось выше, локализованы в матриксе митохондрий, в межмембранном пространстве этой органеллы ферментов относительно мало. Однако здесь находится особый изофермент креатинкиназа (КФ 2.7.3.2), отличающийся по своим свойствам от цитоплазматической формы [4142]. В матриксе креатинкиназы нет. С другой стороны, пероксид-дисмутаза (КФ 1.15.1.1) присутствует во всех трех компартментах фермент, содержащийся в матриксе, отличается от межмембранной и цитоплазматической форм, не различающихся между собой и представляющих другой тип изофермента [4830]. [c.114]

    Ткань измельчают либо в мясорубке, либо, если нужна более мягкая обработка, в гомогенизаторе. Клетки микробов чаще всего разрушают с помощью ультразвука или продавливанием через пресс под высоким давлением. При фракционировании очень важно подобрать нужное значение pH и состав буфера, а при выделении субклеточных органелл— осмотическое давление. Для сохранения целостности органелл часто в качестве суспендирующей среды используют 0,25 М сахарозу, к которой добавляют Mg U, а также реагент, образующий комплекс с металлами, например этилендиаминтетраацетат (ЭДТА) (табл. 4-2). Растворимые ферменты обычно экстрагируют без добавления сахарозы, но при этом используют восстановители — глутатион (дополнение 7-Б), меркаптоэтанол или дитиотреитол (разд. 3.3.а). [c.158]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    Типичная митохондрия имеет почти такие же размеры, как клетка Е. oli, но вообще форма и размеры этих органелл могут быть весьма различны. Во всех случаях митохондрия образована двумя замкнутыми мембранами наружной и внутренней) каждая толщиной 5—7 нм (рис. 10-9). В печени внутренняя мембрана развита слабо и основная часть пространства заполнена матриксом, а в митохондриях сердечной мышцы внутренняя мембрана имеет значительно больше складок и скорость окислительного фосфорилирования там выше. Ферменты, катализирующие реакции цикла трикарбоновых кислот, тоже более активны в митохондриях сердечной мышцы. Более того, ввиду высокой метаболической активности сердечной мышцы почти треть ее общей массы приходится на долю митохондрий. Типичная митохондрия сердечной мышцы имеет объем 0,55 мк на каждый кубический микрон объема митохондрии приходится 89 мк поверхности внутренних митохондриальных мембран [62]. [c.392]

    Чужеродные вещества (ксенобиотики) в печени нередко превращаются в менее токсичные и даже индифферентные вещества. По-видимому, только в этом смысле можно говорить об обезвреживании их в печени. Происходит это путем окисления, восстановления, метилирования, ацетилирования и конъюгации с теми или иными веществами. Необходимо отметить, что в печени окисление, восстановление и гидролиз чужеродных соединений осуществляют в основном микросомальные ферменты. Наряду с микро-сомальным в печени существует также пероксисомальное окисление. Пероксисомы—микротельца, обнаруженные в гепатоцитах их можно рассматривать как специализированные окислительные органеллы. Эти микротельца содержат оксидазу мочевой кислоты, лактатоксидазу, окси-дазу В-аминокислот, а также каталазу. Последняя катализирует расщепление перекиси водорода, которая образуется при действии указанных [c.559]

    Белковые тельца содержат также различные ферменты, среди которых несколько протеаз, амилаз, глюкозидаз, липаз и фосфа-таз [75, 117]. Важность этого арсенала ферментов и та роль, которую они играют во время прорастания ло отношению к запасу белковых телец и окружающей их протоплазме, позволили ряду авторов рассматривать белковые тельца как аутофагиче-ские органеллы, родственные лизосомам [59, 37, 111], [c.135]

    Самые известные липазы — это липазы зерна и семян [36 Наиболее подробно исследована липаза клещевины [79, 80 В семядолях эта липаза связана с мембранами органелл (сфе-росом), в которых глицериды накапливаются. Указанный фермент присутствует в семенах, находящихся в состоянии покоя. Оптимальная среда для его действия — кислая (pH 4,1). Его [c.290]

    Ферменты адсорбировались на поверхности кремнезема, и было обнаружено сохранение их активности. Но тот факт, что митохондрии (частицы, представляющие собой образования, выделяемые из живых клеток, и состоящие из сложных ферментных систем) можно подобным же образом иммобилизовать на кремнеземе, дает возможность раскрыть целые новые области исследований в биохимии [652а]. Другие содержащие мембраны частицы, или органеллы, могут аналогичным образом фиксироваться на кремнеземе, например в виде хлоропластов и микро-сом печени. Поверхность кремнезема должна быть прежде всего превращена в органофильную посредством ее обработки с нанесением алкилсилильных групп. Затем подобные биологические образования могут прилипать к поверхности, давая монослойное покрытие при температуре около 27°С, но они способны десорбироваться при 5°С. Природа такого эффекта непонятна, но можно сделать предположение, что поскольку водородные связи становятся более прочными при 5°С, то вода тем или иным образом вытесняет эти частицы с поверхности, которые должны удерживаться на ней гидрофобными связями. Подобные гидрофобные связи имеют место, и они используются для закрепления ферментов на кремнеземной поверхности [6526]. [c.831]

    Особую группу ферментов составляют надмолекулярные (или мультимолекулярные) ферментные комплексы, в состав которых входят не субъединицы (в каталитическом отношении однотипные протомеры), а разные ферменты, катализирующие последовательные ступени превращения какого-либо субстрата. Отличительными особенностями подобных муль-тиферментных комплексов являются прочность ассоциации ферментов и определенная последовательность прохождения промежуточных стадий во времени, обусловленная порядком расположения каталитически активных (различных) белков в пространстве ( путь превращения в пространстве и времени). Типичными примерами подобных мультиферментных комплексов являются пируватдегидрогеназа и а-кетоглутаратдегидрогеназа, катализирующие соответственно окислительное декарбоксилирование пировиноградной и а-кетоглутаровой кислот в животных тканях (см. главу 10), и синтетаза высших жирных кислот (см. главу 11). Молекулярные массы этих комплексов в зависимости от источника их происхождения варьируют от 2,3 10 до 10 10 Ассоциация отдельных ферментов в единый недиссоциирующий комплекс имеет определенный биологический смысл и ряд преимуществ. В частности, при этом резко сокращаются расстояния, на которые молекулы промежуточных продуктов должны перемещаться при действии изолированных ферментов. Ряд таких мультиферментных комплексов, иногда называемых ферментными ансамблями, структурно связан с какой-либо органеллой (рибосомы, митохондрии) или с биомембраной и составляет высокоорганизованные надмолекулярные системы, обеспечивающие жизненно важные функции, например тканевое дыхание (перенос электронов от субстратов к кислороду через систему дыхательных ферментов). [c.129]

    Лизосомы также ограничены однослойной мембраной. Матрикс их оптически неоднороден и содержит ряд уплотнений. В лизосомах локализован набор гидролитических ферментов, участвующих в разрушении продуктов клеточного метаболизма, причем при помощи специального протонного насоса поддерживается низкое значение pH (не более 4,5), способствующее эффективному гидролизу. Внутриклеточные структуры, подлежащие разрушению, поступают в лизосомы, где и подвергаются гидролизу. Процесс селекции и поступления в лизосомы только отработанного материала обусловлен его специфическим мечением. Так, нативные белки в лизосомы не поступают. По истечении же времени функционирования происходит их инактивация цитоплазматическими протеиназами или присоединение убиквитина, что является сигналом для транспорта в лизосомы модифицирбванного белка. Кроме молекул, лизосомы могут разрушать органеллы или целые клетки (митохондрии, эритроциты). Процесс транспорта веществ в лизосомы является энергозависимым и требует затраты энергии. В растительных клетках гидролитические ферменты обычно локализованы в вакуолях — прообразе лизосом. [c.13]

    Оболочка хлоропласта представляет собой непрерывную двойную мембрану, которая функционирует как селективный барьер при транспорте метаболитов внутрь органеллы или из нее. Полагают, что внутренняя мембрана может играть некоторую роль в формировании новых внутренних ламелл. У некоторых видов растений к внутренней мембране оболочки хлоропласта прилегает протяженная система трубочек и пузырьков. Эта система, известная как периферический ретикулум, по-видимому, характерна для растений, обладающих С4-путем фиксации углерода (разд. 10.6), но иногда она обнаруживается и у некоторых Сз-растений, в частности в стрессовых условиях окружающей среды. Оболочка хлоропластов хлорофилла не содержит, однако в ней присутствуют каротиноиды, а именно зеаксантин (10.1), антераксантин (10.2) и виолаксантии (10.3), которые с помощью ферментов могут превращаться друг в друга. В последнее время появляется все больше данных, свиде- [c.329]

    Нейрональная мембрана, рассматриваемая как цитоплазматическая мембрана, несет в клетке не только пассивную структурную функцию. Она служит барьером для поддержания внутриклеточного состава и функций клетки (ионы, электрический потенциал, метаболиты) и для ее компартментации (клеточные органеллы, везикулы нейромедиаторов), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение медиатора) роли при передаче нервного импульса. Она обладает специфическими характеристиками, необходимыми для развития нервной системы и установления синаптических связей (клеточная адгезия и узнавание). Она проводит также межклеточные сигналы (гормоны, медиаторы, лекарства). [c.88]

    Пероксисомы — внутриклеточные органеллы с однослойной мембраной. Для них характерен тонкозернистый матрикс и отчетливо идентифицируемое уплотнение в центре органеллы — так называемый кристаллоид. В пероксисо-мах локализованы ферменты, окисляющие органические кислоты, а также такие ферменты антиоксидазной системы, как каталаза и пероксидаза (рис. 1.6). [c.13]


Смотреть страницы где упоминается термин Органеллы ферменты: [c.65]    [c.247]    [c.517]    [c.104]    [c.59]    [c.191]    [c.159]    [c.46]    [c.32]    [c.157]    [c.284]    [c.475]    [c.143]    [c.435]   
Методы очистки белков (1995) -- [ c.52 , c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Органеллы



© 2025 chem21.info Реклама на сайте