Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водяной пар и металлы

    Существенная разница в диаметре только преимуществами перегонки без высокопроизводительными контактными устройствами, примененными в первом случае. При перегонке мазута без водяного пара широкая масляная фракция получается более высокого качества (лучший цвет, более низкая коксуемость и небольшое содержание металлов) и остаток имеет лучшую пенетрацию. [c.192]


    Водород широко используется в химической промышленности для синтеза аммиака, метанола, хлорида водорода, для гидрогенизации твердого и жидкого тяжелого топлива, жиров и т. д. В смеси с СО (в виде водяного газа) применяется как топливо. При горении водорода в кислороде возникает высокая температура (до 2600°С), используемая для сварки и резки тугоплавких металлов, кварца и др. Жидкий водород используют как одно из наиболее эффективных реактивных топлив. В атомной энергетике для осуществления ядерных реакций большое значение имеют изотопы водорода — тритий и дейтерий. [c.275]

    Физическая дезактивация (спекание катализатора происхо — дит под воздействием высокой температуры (в некоторых каталитических процессах и водяного пара) и при его транспортировке и циркуляции. Этот процесс сопровождается снижением удельной ПС верхности как носителя (матрицы) катализатора, так и активного компонента (в результате рекристаллизации—коалесценции нанесенного металла с потерей дисперсности). [c.82]

    Причиной разрушения теплообменных аппаратов, обогреваемых горячей водой, водяным паром и другими теплоносителями, может быть также электрохимическая коррозия, возникающая при воздействии содержащихся в воде кислорода и двуокиси углерода. Электрохимическая коррозия приводит к образованию на поверхности металла окислов железа. Скорость ее протекания возрастает при высоких температурах и давлениях. [c.145]

    Следует обратить внимание на необходимость принятия мер по предупреждению возможности образования взрывоопасных газовых смесей в аппаратуре и особенно в топочном пространстве печей. Известен случай, когда при разрущении трубы из нержавеющей стали диаметром 127 мм в топочное пространство печи нефтеперерабатывающего завода были выброшены углеводороды. Взрывом был разрушен технологический аппарат. Разрушение труб в печи пиролиза может быть вызвано их перегревом вследствие нарушений технологического режима процесса, а также отложениями кокса на стенках, что приводит к ухудшению теплопередачи и перегреву металла. Кроме того, материал труб и монтаж поверхностей теплообмена могут быть некачественными. Поэтому в ряде процессов пиролиза для снижения скорости отложения кокса и удаления его с внутренней поверхности стенки в сырье перед зоной реакции ( = 650—700 °С) добавляют раствор поташа, который является эффективным катализатором процесса окисления кокса водяным паром. [c.321]


    Регулярно отбираемые на действующих установках пробы катализатора испытываются на активность, содержание кокса, стойкость против истирания и воздействия водяного пара, загрязнение металлами. Одновременно определяются фракционный состав катализатора (по размеру частиц), удельная поверхность пор, объем и средний диаметр пор. При проверке равновесной активности катализатора путем крекинга сырья серьезное внимание обращают па количество образующегося кокса, поскольку эксплуатационные расходы на заводской установке зависят от его выхода. Снижение выхода кокса уменьшает расход воздуха и энергии на его сжатие, нагрузку и износ циклонных сепараторов, а также сокращает потери катализатора, уносимого в атмосферу газами регенерации. [c.132]

    Значения кажущихся энергий активации деалкилирования толуола в присутствии водяного пара на различных катализаторах близки (138—167 кДж/моль). Считают [264, 265], что это является косвенным подтверждением однотипности механизма реакции деметилирования на различных катализаторах. Предполагаемый механизм включает стадию разрыва связи Сар—СНз, адсорбированной на поверхности металла, с образованием молекулы бензола и метиленового радикала, который реагирует с молекулами воды, адсорбированными на гидрофильной поверхности носителя. [c.176]

    В последние годы интенсивно изучаются процессы превращения толуола и ряда других углеводородов на Rh-катализаторах в присутствии водяного пара [269—272]. Известно, что добавки Pt и других благородных металлов повышают активность и селективность Rh-катализаторов деалкилирования толуола. Для уменьшения расхода благородных металлов изучено [269] промотирующее влияние на выход целевого бензола оксидов Ni, Со, Fe, U, Th, Се, Сг, Мо, W. Показано, что сами по себе указанные оксиды в количестве 1 — 2% (масс.) не обладают деалкилирующей активностью. Наилучшими промоторами являются РегОз и UO3. Зависимость конверсии толуола и селективности образования бензола от мольного отношения Н2О толуол представлена на рис. 37. Эти результаты хорошо согласуются с данными, полученными А. А. Баландиным и сотр. [262] при исследовании деалкилирования толуола водяным паром на Ni-катализаторе. На основании полученных результатов обе группы авторов считают, что при деалкилировании толуола с помощью водяного пара активация углеводорода происходит на активных центрах металла (Ni или Rh), активация молекул воды—на поверхности оксида алюминия и оксидов металлов, образование СО и СО2 — на границе раздела между указанными центрами. [c.176]

    Выполнение изоляции и кожуха должно обеспечивать достаточную их огнестойкость на случай пожара соседних резервуаров и возможность противостоять направленным струям воды, подаваемой на поверхность для охлаждения из лафетных стволов и брандспойтов. С этой целью для покрытия изоляции не должна применяться жесть из легкоплавких металлов, например из алюминия, а конструкция кожуха должна быть плотной и достаточно прочной, чтобы исключить возможность пробивания и разрушения водяной струей кожуха и изоляции. [c.277]

    Благодаря возможности кислородного обмена с окислами переходных металлов водяной пар играет значительную роль в окислительно-восстановительных процессах, проходящих на поверхности катализаторов на их основе. [c.10]

    Тяжелые газойли коксования, каталитического крекин га, термического крекинга водяным паром характеризуются низким содержанием асфальтенов, металлов и имеют низкую коксуемость, что объясняется выводом продуктов процессов [c.106]

    Описан также способ разложения побочных продуктов в водных растворах гидроокисей щелочных металлов при этом регенерируются исходные компоненты — фенол и ацетон. Процесс осуществляется непрерывным способом. Раствор дифенилолпропана в 13%-ной щелочи пропускают через змеевиковый или другой аппарат при 250 °С и соответствующем давлении насыщенного водяного пара с такой скоростью, чтобы время пребывания раствора в нем было около 1 ч. Затем из реакционной массы отгоняют ацетон и после нейтрализации — фенол. [c.183]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]


    Вводимое в катализатор соединение щелочного металла играет роль промотора. Катализатор применяют при конверсии легких углеводородов с водяным паром [c.58]

    Катализатор содержит 10—25 мас.% никеля, диспергированного в 75—90 мас.% окиси алюминия, и металл-промотор (Ва, 5г, Са, К, Ьа, О, Се, Ре или Си). Количество бария в катализаторе может составлять 20 мас.%. Общая поверхность катализатора — 300 м г, поверхность никеля — 5—20 м /г. При паровой конверсии углеводородов, состоящих в основном из парафинов с 5—10 атомами углерода, в присутствии катализатора при температуре 343— 496° С и давлении 10,5—105 ат получают газ, содержащий в основном водород и незначительное количество метана, двуокиси и окиси углерода. На 1 кг углерода расходуется 1,5—3,0 кг водяного пара [c.70]

    Температура плавления огнеупорного непористого носителя более 1000° С. Толщина слоя каталитически активного материала на носителе — от мономолекулярного до 0,254 мм. В состав каталитически активного материала входят Р1, Рс1, Ни, КЬ, 2г, 05 (или их смеси), также окиси, гидроокиси, карбонаты, хроматы, урана-ты, вольфраматы, ванадаты или молибдаты N1, Со, Ag, Мп, Ре, Сг. Са. 5п, 2п. В1, Р1. Рс1, Ни, и. 5Ь, Ре, Си. Количество носителя должно быть достаточно для разделения кристаллитов окнси металла и предотвращения их соприкосновения, что стабилизирует катализатор и затрудняет рост его кристаллитов при высокой температуре. Для увеличения толщины покрова стадии нанесения, сушки, прокаливания повторяют. Катализатор применяют при конверсии метана с водяным паром [c.86]

    ЛОМ, из которого сделана перегонная аппаратура, так как металлы и особенно стекло выщелачиваются (растворяются) прп соприкосновении с водяным паром и водой. Это всегда нужно помнить и учитывать, особенно при проведении некоторых анализов. [c.12]

    В 1922 г. Франц Фишер и Ганс Тропш получили путем каталитической обработки водяного газа (С0 Н2=1 1) при дйвлении порядка 100 ат и 400° над железным катализатором, пропитанным карбонатами щелочных металлов, продукт, разделявшийся на масляный и водный слои [8]. По мере уменьшения щелочности металла (от лития через натрий и калий к рубидию и цезию) относительное количество маслянистого продукта, т. е. водонерастворимых высокомолекулярных соединений, увеличивалось. [c.72]

    Многие химические и тепло- и массообменные процессы тесно связаны с нагреванием, выпариванием, охлаждением и конденсацией. В зависимости от условий технологического режима в качестве источников тепла используют дымовые газы, электроэнергию, воздух, в качестве промежуточных теплоносителей — жидкие и парогазообразные вещества. К жидким теплоносителям относятоя вода, нефтяные масла, глицерин, дифенильная смесь, кремний-органические жидкости, легкоплавкие расплавы металлов и др. К газообразным теплоносителям относятся перегретый водяной пар, воздух, продукты сгорания твердого, жидкого и газообразного топлив и др. [c.132]

    Наиболее прогрессивньши и экономичными являются шаровые (сферические) резервуары, требующие меньшего расхода металла на единицу объема. Поскольку напряжения в таких резервуарах более равномерно распределяются по контуру оболочки, стенки их можно принять меньшей толщины. Резервуары должны быть оснащены соответствующими контрольно-измерительными приборами (указателями уровня жидкой фазы, давления паровой фазы, температуры и др.), предохранительными клапанами, люками (лазами), устройствами для безопасного отбора проб жидкой и паровой фаз. На трубопроводе, предназначенном для заполнения резервуара, должен быть установлен обратный клапан, а на расходном трубопроводе — клапан, автоматически отключающий трубопровод при его разрыве или другой аварии на нем. Для защиты от действия солнечных лучей наземные резервуары окрашивают в светлые тона, изолируют, оборудуют водяным орошением, теневыми кожухами. Необходим тщательный контроль состояния резервуаров, так как даже в средних широтах при нарушениях или потемнении окраски температура внутри резервуара достигает 60 °С. [c.285]

    Оонозными причинами ненормального старения являются 1) дей твие на катализатор некоторых газов при высокой темпера-туре — аммиака, сернистого газа и особенно сероводорода 2) влияние на свойства катализатора ряда сернистых соединений, особенно тех, из которых в условиях каталитического крекинга образуются сероводород и сернистый газ 3) накопление на катализаторе окислов металлов (железа, меди, никеля, ванадия, натрия и др.), содержащихся в виде примесей в сырье 4) действие на катализатор высокой температуры и водяного пара при высокой температуре. [c.52]

    К наиболее серьезным из перечисленных факторов, ускоряю-. / шлх старение Kaiajm3aTopoB и снижающих их активность, отно- сятся высокая температура, водяной пар, металлы и кокс. [c.42]

    Пробы равновесного катализатора систематически анализи -руют с цел1.ю определения индекса активности, содержания кокса, насыпного веса, фракционного состава и механической прочности. Дополнительно, но реже проверяются термостойкость катализатора в атмосфере водяного пара, содержание в нем загрязняюищх металлов, удельная поверхность пор, объем и диаметр пор, регенерационная способность. Методы проведения анализов описаны в литературе [1, 37, 43, 57, 96, 97, 98, 101, 102 и др.]. [c.42]

    Роль активного металла и носителя при превращениях бензола и толуола с водяным паром в присутствии алюмородиевого и алюмородийникелевого катализаторов рассмотрена в работах 266—268]. [c.176]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Конденсация паров воды происходит, как правило, в объеме нефтепродуктов, а затем капли воды проникают через толщу или пленку нефтепродуктов к металлической поверхности. При этом капли воды растворяют в себе и увлекают за собой водорастворимые продукты окисления углеводородных и неуглеводородных компонентов нефтепродуктов. Кроме того, вода в силу своей высокой полярности может притягивав полярные малостабильные соединения, не растворяющиес5 в воде, и транспортировать их к металлическим поверхностям. Таким образом, между металлом и нефтепродуктом практически всегда образуется водяная пленка, способствующая развитию электрохимических процессов коррозии. [c.282]

    Мен>1я переменные параметры процесса, состав сырья для глинистглх катализаторов, количеством пара можпо контролировать концентрацию и активность металлов в катализаторе. Примесь металлов приводит к значительному увеличению отложений кокса нри одновременном снижении выхода бензина. Это обстоятельство служит по-видимому существенной помехой для промышленного крекинга. На общую активность катализатора, как уже указывалось, влияет также перегрев, особенно, в присутствии водяного нара. Следовательно, контроль за условиями процесса чрезвычайно важен и с точки зрения их влияния на катализатор. Только таким образом можно предупредить необратимые изменения катализатора, приводящие к уменьшению выходов требуемых продуктов. [c.160]

    Катализатор Стандард Ойл Дэвэлоимент Компани , известный под названием катализатор 1707 , имеет следующий состав 72,4 М 0 — 18,4 ГоаО., —4,6 СиО —4,6 КдО [37 . В лабораторных опытах с этим катализатором из чистых и-бутепов были получены предельные выходы бутадиена порядка 85% при 20%-ной конверсии и 72% при 40%-ной конверсии. Одиако во время заводских опытов с менее чистым бутеновым сырьем была достигнута более низкая избирательность (от 70 до 80% при конверсии 20—25%). Активным дегидрирующим компонентом катализатора является железо. Предполагается, что медь в какой-то мере также способствует повышению активности катализатора и служит также стабилизатором. Калий, присутствующий, по-видимому, в виде КаСОд, является промотором и способствует взаимодействию отложившегося кокса с паром. Применение в качестве промотора гидроокиси калия является большим достижением, так как по своему промотирующему де -ствию она намного превосходит гидроокиси натрия, лития, кальция и других металлов, ранее использовавшихся в катализаторах. Сравнимых результатов можно достичь только путем применения очень дорогих рубидиевых и цезиевых промоторов. Во время работы катализатора содержание промотора снижается, однако количество его можно восполнить подачей с сырьем или водяным паром раствора К СОд. В настоящее время в литературе описаны многочисленные модификации катализатора 1707 [37]. Лабораторные опыты показывают, что вместо железа в катализаторе могут быть использованы марганец или кобальт, а вместо -окиси магния — окиси цинка, бериллия или циркония. Окись цинка, [c.202]

    Для большинства процессов производства синтетического топлива требуется получать газ при давлении около 30 ат. Несмотря на то, что окисление метана псевдоожижепными окисями металлов можно проводить при давлении 30 ат, работа с горячими псевдоожижепными твердыми материалами представляет более трудную операцию, чем процесс частич-ного сгорания метана с чистым кислородом при 30 ат. Известно также [21], что при повышенных давлениях уменьшается скорость конверсии мотана водяным паром или двуокисью углерода. [c.314]

    Не менее древней является история машин для подачи газов. Мех и опахало применились как нагнетатели воздуха еще много веков тому назад. С их помощью при выплавке металла и кузнечных работах воздух подавали в печи и горн. Еще в ХУП1 в. на металлургических заводах для подачи воздуха в доменные печи использовались ящичные меха, приводимые в действие водяными колесами. [c.3]

    Ранее провддились исследования. по использованию не1 от ор111х катализатрров, содержащих оксиды металлов пережженной валентности, для интенсификации процессов пиролиза углеводородного, сырья е получением низкомолекулярных олефинов. Прказана высокая эффективность применения указанных катализаторов для каталитического пиролиза различных нефтяных фракций в среде водяного пара [1.50, 1.51]. При каталитическом пиролизе тяжелых нефтяных фракций (вакуумных газойлей, мазутов), кроме получения низкомолекулярных олефинов, исследовалась возможность получения легких дистиллятных продуктов — компонентов моторных топлив или нефтехимического сырья (ароматических углеводородов) [1.52, 1.53]. [c.18]

    В последние годы появились новые деструктивные процессы, предназначенные для переработки тяжелых нефтяных остатков. В процессе Юрека (термокрекинг гудрона перегретым водяным паром) выход тяжелого газойля (240-540°С) составляет 50.5/ и характеризуется низким содержанием асфальтенов (100 ppm), металлов (V + Ni + Fe < 0.6 ppm) и высоким содержанием серы — 2.82%. По приведенным показателям качества тяжелый газойль процесса Юрека можно отнести к группе сырья П. [c.108]

    Водяной пар при высоких темперттурах (порядка тем1гс-ратуры регенерированного катализатора и выше) в присутствии металлов переменной валентности (железо и другие) также не является абсолютно химически инертным. Окисление алкилароматических углеводородов за счет частичного химического разложения водяного пара может приводить к образованию фенолов, хотя и в меньшей степени, чем за счет адсорбированного катализатором кислорода. [c.120]

    Этот процесс следует отличать от типично некаталитического металлопарового процесса получения водорода, в рамках которого осуществляется полное окисление углеводородного сырья окислом металла до двуокиси углерода и воды. В рассматриваемом процессе только часть углеводородного сырья участвует в этой реакции. Другая его часть конвертируется с образовавшимися (по указанной реакции) двуокисью углерода и водяным паром. Катализатором конверсии, видимо, являются поверхностно восстановленные до металла частицы окисла металла (см. табл. 18). [c.38]

    В составе многих применяемых в этом процессе никель-алюми-ниевых катализаторов содержатся добавки окислов щелочных металлов, окись хрома и многие другие трудновосстанавливаемые и тугоплавкие окислы металлов. Роль этих добавок заключается в предотвращении или замедлении отложения углерода на катализаторе в процессе конверсии бензина. С целью предотвращения зауг-лероживания катализатора предлагается также подавать смесь углеводородного сырья с водяным паром на катализатор при температуре равной или более 350° С. Для этого же реко.мендуется рециркулировать часть образующего газа с таким расчетом, чтобы объемное соотношение возвращаемого газа и исходных реагентов было равно 2—10. Использование последнего приема позволило увеличить пробег катализатора без понижения активности почти в три раза (с 200 до 550 ч). [c.44]

    Катализаторы конверсии бензиновых фракций с водяным паром, кислородом и двуокисью углерода. Процесс конверсии бензинов с кислородом осуществляется как в непрерывном (автотермическом), так и периодическом вариантах при очень высоких температурах (до 1000° С). Последнее обстоятельство является причиной того, что для этого процесса обычно рекомендуют никелевые катализаторы, нанесенные на огнеупорный носитель (см. табл. 31). В качестве такого носителя используется алюмомагниевая шпинель состава М А1204 (табл. 31, № 1 и 2). Пластифицирующим компонентом смеси порошков окислов металлов, направляемых на прессование, является стеарат магния. Пропитка готового носителя проводится расплавом нитрата никеля. При этом за одну пропитку в катализатор вводят 12% никеля (табл. 31, № 1). [c.50]

    Углеводородные газы контактируют контактом в псевдоожиженном слое. Часть контакта выводят из реакционной зоны в окислительную и затем возвращают обратно. Взвесь образующейся окиси никеля окисляет часть углеводородов в двуокись углерода и воду, и восстанавливается до металла. Углеводороды конвертируют с обра.зовавшимися двуокисью углерода и водяным паром [c.110]

    Содержание серы. Сера не затрудняет горения, сгорая до сернистого газа, уносимого дымовыми газами, однако ее присутствие может вызвать ряд нежелательных последствий. При охлаждении дымовых газов ниже точки росы водяных наров в смеси и в присутствии металла может произойти коррозия. [c.485]


Смотреть страницы где упоминается термин Водяной пар и металлы: [c.116]    [c.116]    [c.273]    [c.176]    [c.178]    [c.346]    [c.201]    [c.312]    [c.23]    [c.28]    [c.33]    [c.76]    [c.190]   
Основы вакуумной техники (1957) -- [ c.159 ]




ПОИСК







© 2025 chem21.info Реклама на сайте