Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правило фаз в растворах полимеров

    Ленты и предварительно про- 287 С 4 — отверждение при 260 С. питанные листы или рулоны можно получить и из расплава полимера, что особенно перспективно при изготовлении стеклопластиков с высоким содержанием связующего. Аналогичных результатов можно добиться и многократной пропиткой стеклоткани раствором полимера. Как правило, растворы полимера наносят несколько раз на ткань и сушат очередной слой в течение 30 мин при 120 °С. Когда требуемая толщина слоя достигнута, ткань с покрытием выдерживают в вакууме при 160 °С. [c.233]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Уменьшение сопротивления. Под уменьшением сопротивления понимают значительное снижение коэффициента трения при малых добавках определенного высокомолекулярного полимера в ньютоновскую жидкость при ее турбулентном течении в трубе. Этот э())фект виден из рис. 7, на котором показана зависимость f от Не для разных концентраций оксида полиэтилена в воде. Здесь Ке — обычное число Рейнольдса, поскольку вязкость столь сильно разбавленных растворов полимера практически не зависит от скорости сдвига. В ламинарном режиме течения добавки полимера на величину / не влияют. Правее той точки, где начинается такое влияние (Не 3000), с увеличением концентрации полимера f уменьшается. Однако существует предел, меньше которого коэффициент трения быть не может, как бы много полимера мы пи добавляли. Из рисунка видно, что добавки долей по массе оксида полиэтилена приводят к уменьшению / для воды на 40% при значении Не= 10 , в то время как вязкость раствора увеличивается по сравнению с вязкостью чистой воды всего на 1%. В табл. 7 приведены примеры некоторых других систем, в которых наблюдается аналогичное уменьшение сопротивления. Дополнительную информацию по этому вопросу можно найти в обзорах (23, 24). [c.174]

    Экспериментально наблюдаемые концентрационные зависимости удельной вязкости растворов полимеров показывают, что их вязкость, как правило, не подчиняется закону Эйнштейна (уравнение (УП. 1). С повыщением концентрации растворов "Пуд растет более резко по кривой, обращенной выпуклой частью к оси концентрации (рис. 60). [c.194]


    Таким образом, при низких температурах и атмосферном давлении, применяя разбавленные растворы полимеров, можно ожидать превалирования реакций между шеньями отдельных макромолекул и низкомолекулярными реагентами. С повышением концентрации полимера в растворе, а также с возрастанием температуры и давления увеличивается вероятность и межмолекулярных реакций между функциональными группами, что, как правило, приводит к образованию сетчатых полимеров. [c.175]

    Как и выше, определяющим уравнением является уравнение ОНЖ (6.3-6) с т) (y), задаваемой соотношением (6.5-8) tIq — вязкость при нулевой скорости сдвига, а т] — вязкость при бесконечной скорости сдвига. Последнюю, как правило, можно считать равной вязкости растворителя для растворов полимеров и равной нулю для расплавов. [c.156]

    Опыт показывает, что интенсивность набухания и растворения полимерен зависит от их физического состояния. Т к, наиболее легко набухают и растворяются полимеры, находящиеся в высокоэластичном или вязко-текучем состояниях. Значительно медленнее и труднее растворяются полимеры, находящиеся в стеклообразном состоянии. В этом случае процесс растворения, как правило, начинается с поверхностного набухания, которое затем постепенно и очень, медленно переходит в объемное набухание. Еще более трудно растворяются полимеры, находящиеся в кристаллическом состоянии. Их растворение в подавляющем большинстве случаев достигается лишь при нагревании. [c.331]

    Несмотря на то, что растворы высокомолекулярных веществ не являются коллоидными в точном смысле этого слова, описание их свойств, как правило, включают в курс коллоидной химии, поскольку сходство ряда свойств коллоидных растворов и растворов высокомолекулярных веществ позволяет рассматривать многие проблемы одновременно для систем обоих типов. Помимо этого, кроме типичных растворов высокомолекулярных веществ, в которых они существуют в виде больших, но не связанных друг с другом, обычно вытянутых или свернутых в весьма рыхлые клубки молекул, известны растворы полимеров, по существу ничем не отличающиеся от коллоидных систем. Это растворы полимеров в плохих растворителях цепные молекулы в таких растворах свернуты в компактный клубок с явно выраженной поверхностью, на которой могут протекать явления адсорбции. Примером таких систем являются натуральный и синтетические латексы, у которых сравнительно большие полимерные частицы находятся в вод- [c.14]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]

    Цепные молекулы полимеров нельзя обнаружить в растворах при ультрамикроскопических наблюдениях. Это объясняется тем, чт<э растворы полимеров гомогенны и линейные макромолекулы приближаются к коллоидным частицам только по длине, а в двух других направлениях соответствуют размерам обычных молекул. Кроме того, линейные макромолекулы нельзя обнаружить под ультрамикроскопом из-за сольватации макромолекул (если она имеет место) и еще потому, что коэффициент преломления полимеров, как правило, сравнительно близок к коэффициенту преломления среды. [c.457]


    Различен и механизм обоих явлений. Коагуляция золей происходит обычно в результате сжатия двойного электрического слоя и уменьшения или полного исчезновения электрического заряда на поверхности частицы, являющегося в этом случае основным фактором устойчивости. Выделение же из раствора полимера при добавлении электролита объясняется уменьшением растворимости высокомолекулярного вещества в концентрированном растворе электролита. По аналогии с подобными явлениями в растворах низкомолекулярных веществ такое выделение высокомолекулярного вещества из раствора можно называть высаливанием. Дебай считает, что при высаливании молекулы растворенного вещества вытесняются из электрического поля введенных ионов, которые связываются с полярными молекулами растворителя. Таким образом, высаливание принципиально не отличается от выделения высокомолекулярного вещества из раствора при добавлении к последнему нерастворителя. Как правило, высаливающее действие ионов изменяется соответственно тому порядку, в каком они стоят в лиотропном ряду. Так, катионы по мере уменьшения их высаливающего действия могут быть расположены в ряд  [c.466]

    Полимеры в подавляющем большинстве либо совсем нерастворимы, либо растворимы лишь в немногих растворителях. Растворы полимеров (если они растворимы), как правило, обладают значительной вязкостью. При нагревании многие полимеры сначала размягчаются, а затем разлагаются, не плавясь. [c.365]

    Используемые для повышения нефтеотдачи системы, как правило, тоже обладают неньютоновскими свойствами, которые крайне важны для их технологической эффективности. Именно благодаря неньютоновским свойствам такие системы, как растворы полимеров, глинистые суспензии и неорганические гели, нашли широкое применение в нефтяной промышленности как водоизолирующие агенты. Кроме того, для дисперсных систем изучение механических свойств является весьма удобным методом исследования протекающих процессов структурообразования и стабилизации. [c.46]

    Применение правила фаз к растворам полимеров 325 [c.325]

    ПРИМЕНЕНИЕ ПРАВИЛА ФАЗ К РАСТВОРАМ ПОЛИМЕРОВ [c.325]

    Первые работы по применению правила фаз к растворам полимеров относятся к 1912 г. В качестве объекта исследования были взяты белковые вещества яичный и сывороточный альбумин и желатин. Наибольшее значение в этой области имели работы [c.325]

    Роль промежуточного (буферного) раствора. В качестве промежуточного агента между оторочкой мицелляр-ного раствора и основной массой проталкивающей ее воды не пользуется, как правило, слабоконцентрированный водный раствор полимера типа полиакриламида. [c.183]

    Общее правило заключается в том, что при малом Ai (в твердых полимерах) Av велика (быстрая релаксация) и это ведет к появлению в спектре ЯМР широких линий поглощения если же At — большая величина (растворы полимеров в невязких растворителях), то Av мала (медленная релаксация) и в спектре ЯМР имеются узкие линии поглощения. [c.312]

    Как доказывается применимость правила фаз к растворам полимеров и какие выводы из этого следуют [c.197]

    Как правило, такие полимеры имеют аморфную структуру, температуру стеклования 180-200 °С и образуют пленки из растворов в метиленхлориде и хло- [c.266]

    Работа с растворами полимеров ввиду пожароопасности и токсичности многих растворителей в закрытых помещениях требует строгого соблюдения правил техники безопасности. [c.39]

    Обычно реакционную смесь или раствор полимера при интенсивном перемешивании по каплям вливают в 4—10-кратный избыток осадителя. При этом концентрацию полимерного раствора (как правило, не выше 10%) и количество осадителя подбирают так, чтобы полимер выпадал в виде хлопьев. Часто выпавший полимер остается в виде коллоида. В этом случае осаждение проводят при низкой температуре (внешнее охлаждение или последующее введение сухого льда) или добавляют электролиты (растворы хлорида натрия или сульфата алюминия, разбавленную соляную кислоту, уксусную кислоту или аммиак). Иногда полимер выделяется в виде хлопьевидного осадка только после длительного интенсивного перемешивания или встряхивания. Полиме- [c.65]

    Из водных растворов полимеры, как правило, выделяют при осаждении в спирт, ацетон или смесь метанол — эфир. Для выделения полимера из водной эмульсии, которое часто бывает трудно осуществить, применяют следующие методы разведение раствора водой с одновременным добавлением электролита, вымораживание, а также впрыскивание раствора в спирт или ацетон. [c.66]

    Реакции химической деструкции полимеров протекают, как правило, по закону случая. Например, гидролиз полиэфира начинается не с конца цепочки и не развивается по механизму последовательного отщепления мономерных единиц. Реакция начинается с некоторой случайной группировки внутри цепи, поэтому образующиеся продукты реакции имеют большую молекулярную массу. Только в результате многократного повторения актов гидролитического расщепления полимер может быть разложен на фрагменты, соответствующие одной мономерной единице. Так как обычно в условиях проведения гидролиза или ацидолиза даже низкомолекулярные осколки полимера нелетучи, то за реакцией разложения нельзя следить гравиметрически (в противоположность термическому разложению). Часто в таких случаях реакцию контролируют, применяя титрование для определения количества непрореагировавшего реагента. Весьма чувствительной пробой на деструкцию является измерение вязкости раствора полимера по мере протекания реакции (см. опыты 5-18 и 5-19). [c.93]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Экспериментальные исследоваиня показывают, что полимеры растворяются в низко.. голекуляриьгх растворителях, как правило, с небольшим тепловым эффектом, но в то же время образуют растворы, для которых характерно сильное отрицательное отклонение от идеальности. На рис. VI. 12 показана зависимость давления пара растворителя от его мольной доли в растворе полимера. Так как определение отклонений от идеальности растворов полимеров удобнее проводить по изменению активности растворителя Яь тов качестве основного термодинамического уравнения, описывающего состояние раствора полимера, чаще всего пр1шимают выражение для осмотического давления (IV.45)  [c.320]

    Применение высоковязких полимеров на магистральных нефтепроводах Западной Сибири, сооружаемых, как правило, в болотистых условиях и в зимнее время, позволило решить проблему удаления жидких скоплений и механических примесей, так как монтажные выступы, вмятины, сужения и строительные детали не позволяли очистить трубопровод механическими разъединителями. В 1978 г. из нефтепровода Нижневартовск—У сть-Балык было вынесено более 800 т жидких скоплений вместе с полиакриламидными и механическими примесями. С помощью водных растворов полимеров были освобождены от жидких скоплений и механических примесей параллельные и резервные нитки нефтепровода Александровское-Анжеро-Судженск. [c.44]

    На форму макромолекулы в растворе, как это показали экспериментальные исследования, существенным образом влияет природа растворителя. В одном растворителе молекулы полимеров могут быть более вытянуты, в другом — более свернуты в клубок. Как правило, чем лучше полимер растворяется в данной жидкости, чем более он сольватнроваи, тем меньше участки молекулярной цепи взаимодействуют друг с другом, тем более вытянуты макромолекулы и тем выше вязкость раствора. В плохом растворителе макромолекулы мало сольватированы и поэтому образуют более компактные клубки. Поэтому введение в раствор полимера нерастворителя обычно значительно снижает вязкость раствора. [c.461]

    Одно из экспериментальных доказательств равновесностн растворов полимеров — применимость к ним правила фаз. К коллоидным же системал правило фаз неприменимо, так как состоянию равновесия в золе отвечает расслоение его на две фазы — жидкость и осадок. [c.202]

    Каргин с сотрудниками подробно изучил свойства целого ряда растворов полимеров и доказал применимость к ним правила фаз. В лаборатории Каргина были получены диаграммы состояния двух- и трехкомпонентных систем, например систем ацетилцеллюлоза—хлороформ, нитроцеллюлоза—бутилкапро-новый эфир, бензилцеллюлоза—толуол и др. Каргин показал, что растворы ацетилцеллюлозы по своему поведению не отличаются от классической системы фенол — вода.. [c.202]

    Подобно низкомолекулярным веществам, полимер не может быть растворен в любой жидкости. В одних жидкостях (при непосредственном контакте с ними) данный полимер самопроизвольно растворяется, в других жидкостях никаких признаков растворения не наблюдается. Иапример, натуральный каучук самопроизвольно растворяется в бензоле и пе взаимодействует с водой. Желатин хороию растворяется в воде и не взаимодействует с этиловым спиртом. Очевидно, в одних случаях полимер и низкомолекулярная жидкость имеют взаимное сродство, а в других оно отсутствует, В первом случае следует ожидать образования истинного раствора, во втором — коллоидного. Действительно, самопроизвольно образующиеся растворы полимероп имеют все признаки истинных растворов, в том числе основной признак — обратимость и равновесность, о чем свидетельствуют исследования применимости правила фаз к растворам полимеров (стр. 325). Однако истинные растворы полимеров имеют свои особенности, отличающие их от истинных растворов ннзкомолекулярных веществ. К ним относятся набухание, предпшствующее растворению, высокая вязкость, медленная диффузия и неспособность проникать через полупроницаемые мембраны. Все это обусловлено огромной разницей в размерах частиц смешиваемых компонентов. [c.316]

    Повышенная концентрация растворов химреагентов, сырой и подготовленной нефти, легких углеводородов (растворителей, нестабильного бензина, керосина), как правило, приурочена к узлам приготовления и закачки растворов на нефтяной, водной, углеводородной основе. Сюда следует относить узлы приготовления и закачки мицеллярных растворов, полимеров, силикатно-щелочных, кислотных и поверхностно-активных веществ. Перечень применяемых марок химреагентов в технологиях и их применения может быть самым разнообразным как по количеству, так и 1П0 объему. В связи с этим на узлах их приготовления и закачки образуются различные остатки в виде нефте-шлама, химшлама и твердых остатков. Аналогичное содержание остатков может быть и в сточной воде, применяемой для утилизации и закачки в пласт или других технологических целей. К наиболее трудоемким, с точки зрения утилизации остатков шлама, относятся токсичные твердые частицы. Они могут содержаться в твердых осадках при силикатно-щелочном заводнении с добавкой других интенсифицирующих химреагентов, тринатрийфосфата и в механических примесях, при сернокислотной и солянокислотной обработках. Твердые частицы обычно разделяются за счет гравитационного эффекта я выпадают в нижнюю часть технологических емкостей, которые необходимо периодически Чистить. Для сбора остатков (шлама) используют канализационные емкости, амбары или водовозы. В случае применения водовозов отходы вывозятся [c.382]

    По вязкости разбавленных растворов полимеров можно судить о их молекулярной массе. Характеризуя применяемые для получения лаков и клеев промышленные образцы полимеров, как правило, указьшают молекулярную массу или (и) вязкость их растворов. Обычно приводят относительную, удельную или характеристическую вязкость их разбавленных растворов. Для практического применения полимеров обычно достаточно знать одну из этих характеристик. Полимеры с удельной вязкостью 0,3—0,5 считают низковязкими 1,5 и вьш1е — высоковязкими. [c.14]

    Распределение водорастворимых антисептиков, антипиренов между раствором и древесиной при ее погружении в раствор практически не зависит от концентрации солей в растворе и близко к единице. В случае полимерных растворов имеет место зависимость поглощения от концентрации полимера, его молекулярной массы и наличия функциональных групп, способных взаимодействовать с активными центрами образующих древесину веществ. Как правило, необходимо использовать высококонцентрированные (5-20%-е) растворы полимеров. [c.111]

    С этим методом полимеризации ВА, с точки зрения его значимости для производства поливинилацетатных пластиков, может кон- курировать только метод полимеризации в эмульсии. Как правило, растворы ПВА используются в качестве полупродуктов для получения ПВС и поливинилацеталей, Лищь ограниченное количество растворов полимеров и сополимеров ВА (в этаноле, этилацетате, толуоле) выпускается в виде товарных продуктов, применяемых обычно в качестве клеев различного назначения. [c.16]


Смотреть страницы где упоминается термин Правило фаз в растворах полимеров: [c.259]    [c.137]    [c.436]    [c.442]    [c.327]    [c.56]    [c.436]    [c.85]   
Коллоидная химия (1959) -- [ c.170 ]

Коллоидная химия (1959) -- [ c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы полимеров



© 2025 chem21.info Реклама на сайте