Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы полимеров идеальные

    Все уравнения, описывающие свободную энергию смешения сегментов полимеров в растворе, содержат стремящиеся к нулю выражения, когда 9 = 7 , к или Хх = При этих условиях говорят, что раствор полимера идеальный, или же находится при его 0-температуре. Это предполагает, что в свободную энергию смешения вносит вклад только полимерная молекула как целое, рассматриваемая как не имеющая объема точка пространства, и что второй вириальный коэффициент в выражении для осмотического давления равен нулю. С другой стороны, из-за равенства (в принципе) энтальпии и энтропии растворения можно ожидать, что две полимерные молекулы будут свободно смешиваться (проникать друг в друга) независимо от присутствия других молекул (см. ниже, раздел 111.2). [c.33]


    Аналогично поведению реальных газов в точке Бойля растворы полимеров в указанных условиях ведут себя, как идеальные. В частности, в 0-условиях второй вириальный коэффициент в концентрационной зависимости осмотического давления обращается в нуль, и растворы полимеров подчиняются закону Вант-Гоффа вплоть до концентраций в несколько процентов. Определение условий обращения в нуль второго вириального коэффициента уравнения осмотического давления является, таким образом, одним из способов нахождения 0-температуры. [c.32]

    Термин термодинамически идеальный растворитель в применении к растворам полимеров, таким образом, отнюдь не соответствует понятию хорошего растворителя, а, напротив, относится к растворителям, в которых полимеры высокой молекулярной массы находятся на грани высаживания, [c.32]

    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Процессы адгезии играют значительную роль в технологии получения текстильных и композиционных материалов, битуминозных материалов для дорожного строительства, новых клеев и т.д. Существующие термодинамические теории адгезии основаны на результатах исследований энергии межфазного поверхностного натяжения, краевых углов на границе субстрат - адгезив , а также смачивания и растекания адгезива на межфазных границах с учетом вязкости и различного вклада межмолекулярных сил [1-3]. При этом недостаточно учитывается структура молекулярных растворов полимеров и их отклонения от идеальных. [c.111]


    Теория Флори — Хаггинса позволила объяснить большие отклонения от идеальности растворов полимеров. Она удовлетворительно согласуется с экспериментальными данными для растворов, В которых слабо выражены тепловые эффекты. Однако ряд экспериментальных фактов еш,е ждет объяснения, несмотря на постоянное совершенствование теории. [c.324]

    Доказать, что при 0-температуре не наблюдается отклонения от идеальности в разбавленных растворах полимеров. [c.118]

    Поскольку растворы полимеров значительно отклоняются от идеальности, для определения М необходимо производить экстраполяцию к с = О или вводить соответствующие поправки. [c.65]

    Только очень разбавленные растворы ВМС ведут себя как идеально вязкие жидкости — их вязкость подчиняется законам Ньютона и Пуазейля, т. е. не зависит от скорости течения. В более концентрированных растворах полимеров наблюдается ряд аномалий — непостоянство вязкости при изменении скорости течения, непропорциональное возрастание ее с повышением концентрации. Аномалии вязкости дисперсных систем [c.441]

    Каковы же причины, приводящие к изменению энтропии раствора полимера по сравнению с совершенным раствором Основная причина заключается не в различии объемов молекул компонентов. Само по себе это различие также приводит к некоторым эффектам отклонения от идеальности. [c.255]

    Отсюда видно, что при Г = 0 коэффициент Лг = О, т. е. раствор полимера ведет себя как идеальный. 0-температуру можно определить, экстраполируя зависимость Лг от температуры к Лг = 0. [c.87]

    Растворение высокомолекулярных соединений принято рассматривать как процесс смешения двух жидкостей. Основная особенность растворов полимеров — их неидеальное (даже при значительных разбавлениях) поведение. Под идеальным раствором обычно понимают подчинение его закону Рауля, согласно которому отношение парциального давления пара р растворителя над раствором к давлению пара ро над чистым растворителем равно его мольной доле Л 1 в растворе [c.149]

    Это уравнение (уравнение Вант-Гоффа) справедливо для идеальных растворов. Реальные растворы полимеров, даже очень разбавленные, неидеальны. К ним применимо следующее уравнение  [c.168]

    Избыточная энтропия атермических растворов обычно положительна (5 > 0 С <0), причем для растворов, содержащих большие молекулы (длинные цепи, глобулы) отклонения от идеальности могут быть очень значительными. Наиболее существенно учитывать фактор размера молекул в случае растворов полимеров, где молярные объемы растворенного вещества и растворителя различаются в тысячи раз и более. [c.252]

    В связи с тем, что расчеты энтропий гибких молекул полимеров в растворах приводятся методами статистической термодинамики, эти вопросы обычно рассматриваются отдельно. На примере атермальных растворов видно, что одного только отсутствия изменения энергии при образовании раствора еще недостаточно, чтобы раствор оказался идеальным. [c.102]

    Опытные данные показывают, что для растворов полимеров в растворителях с низкой молекулярной массой (например, раствор каучука в толуоле) характерны большие отрицательные отклонения от идеального поведения. Давление пара растворителя с ростом концентрации полимера убывает много быстрее, чем по закону Рауля, но в то же время теплоты растворения сравнительно невелики  [c.425]

    Существующая теория позволила рассчитать энтропию смешения полимера с растворителем, величина которой ближе к значениям, найденным опытным путем, чем к рассчитанным по уравнению (5). Это наглядно показано на рнс. 172. Теория предсказывает отрицательные отклонения От идеальности для растворов полимеров, и тем большие, [c.397]

    Описанная выще теория пригодна для идеальных растворов, а на практике необходимо построить график зависимости Нс/х от с и экстраполировать его к нулевой концентрации для получения величины Нс/х, с помощью которой затем можно найти правильное значение молекулярного веса [по уравнению (20.38)]. Фактически можно показать, что для неидеального раствора полимера, для которого осмотическое давление (разд. 20.12) записывается в виде [c.620]

    Далее идут атермические системы (Д/У= 0), например, изученные Каргиным и Тагер растворы полимеров в своих гидрированных мономерах, в частности, полиизобутилена в изооктане. В этом случае энергии взаимодействия молекул полимера между собою равны их энергии взаимодействия с растворителем, поэтому при смешении ДЯ = О гибкость цепей полимера не изменяется и растворение происходит благодаря тому, что энтропия смешения больше идеальной энтропии смешения (в приведенном примере—приблизительно в 100 раз). [c.181]

    Деформация в вязкотекучем состоянии представляет собой деформацию сдвига, для которой характерно изменение формы тела при неизменном его объеме. Деформация сдвига, вызванная действием внешних сил (напряжением сдвига), является необратимой. Характер течения и поведение при течении обычных жидкостей и расплавов (а также растворов) полимеров имеют существенные различия. Обычные жидкости подчиняются закону Ньютона, смысл которого состоит в следующем. Если осуществлять чрезвычайно медленно деформирование жидкости, то в ней начнут развиваться бесконечно малые напряжения, т. е. слои жидкости будут сдвигаться относительно друг друга без всякого сопротивления. Однако как только скорость смещения слоев станет конечной, сразу же проявится сопротивление жидкости сдвигу. Математически связь между скоростью сдвига и напряжением сдвига может быть представлена уравнением, выражающим закон Ньютона или закон течения идеальных вязких жидкостей  [c.34]


    Экспериментальные исследоваиня показывают, что полимеры растворяются в низко.. голекуляриьгх растворителях, как правило, с небольшим тепловым эффектом, но в то же время образуют растворы, для которых характерно сильное отрицательное отклонение от идеальности. На рис. VI. 12 показана зависимость давления пара растворителя от его мольной доли в растворе полимера. Так как определение отклонений от идеальности растворов полимеров удобнее проводить по изменению активности растворителя Яь тов качестве основного термодинамического уравнения, описывающего состояние раствора полимера, чаще всего пр1шимают выражение для осмотического давления (IV.45)  [c.320]

    Полученная формула определяет чисто конфигурационную энтропию, т. е. учитывает только перемену мест молекул растворителя и звеньев цепи макромолекул. Растворы, отвечающие такому предельному случаю, называются атермическими растворами (при смешении не происходит изменения внутренней энергии — тепловой эффект равен нулю). Чтобы данную теорию можно было применить для реальных растворов полимеров, имеющих небольшие отклонения от строго атер-мических растворов, предложено учитывать изменение внутренней энергии с помощью теории регулярных растворов. В отличие от атермических растворов для регулярных растворов энтропия смешения принимается равной энтропии при идеальном смешении, а неидеальность системы обусловлена только изменением внутренней энергии (межмолекулярным взаимодействием). [c.322]

    Из теории Флори — Хаггинса следует, что растворение полимера в хороших растворителях сопровождается существенным уменьшением энергии Гиббса, что обусловлено как выделением теплоты (ДЯ<6), так и ростом энтропии. В таких системах Лг > О и % < 7г (отрицательное отклонение от идеальности). Это означает, что силы отталкивания между макромолекулами в растворе полимера обусловлены энтропийной составляющей и взаимодействием с растворителем. В плохих растворителях (Лг < 0) происходит поглощение теплоты (АН >0), и силы оттал14Ивання между макромолекулами имеют исключительно энтропийную природу рост энтропии полностью перекрывает рост энергии Гиббса вследствие межмолекулярного взаимодействия. В этих системах возможно достижение температуры Флори (положительная энтальпия смешения компенсируется избыточной энтропией), ниже которой доминируют силы притяжения между макромолекулами (Лг < 0). [c.324]

    Роль размера частиц дисперсной фазы в устойчивости растворов полимеров связывает их с другими коллоидными системами. Уже можно утверждать, что для систем с компактными сферическими частицами дисперсной фазы отклонения от идеальности хотя и меньше, чем для систем, содержащих линейные макромолекулы, но они все равно остаются отрицательными. Таким образом, только различие в размерах частиц дисперсной фазы и молекул дисперсионной среды вносит вклад в энтропийный фактор устойчивости коллоидных систем. Этот вклад возрастает для лиозолей, стабилизированных с помощью ПАВ и особенно высокомолекулярных соединений. [c.324]

    Значения второго вириального коэффициента В обусловливаются величиной Л/ , разветвленностью и полидисперсностью полимера, гибкостью макромолекул. Иными словами, коэффициент В может служить мерой отклонения осмотических свойств реального раствора от идеального в результате разбухания молекулярных клубков. Этот процесс, обусловленный осмосом растворителя в молекулярный клубок, предполагает изменение конформаций макромолекул, переход их в новые энергетические состояния. Разница между обоими равновесными энергетическими уровнями соответствует работе упругих сил, стремящихся вернуть молекулу в первоначальное состояние. Разбухание клубков прекращается, когда осмотические силы уравновещиваются упругими. [c.106]

    Учит 51вая особенности поведения ра бав.пенн1з1х растворов полимеров и связанные с этим отклонения от закономерностей для идеальных растворов, нри вычислениях обычно пользуются уравнением Оствальда, удовлетворительно отражаюи1им зависимость [c.79]

    Растворы полимеров никогда не удовлетворяют всей совокупности этих условий. Они обнаруживают существенные отклонения от идеального поведения даже при АЯсм = 0. Флори и Хаггинс вывели выражение для комбинаториальной энтропии смешения для атермического раствора модельных гибких цепей в. низкомолекулярном растворителе  [c.84]

    Атермический раствор полимера обнаруживает отрицательное отклонение от идеальности, поскольку из сопоставления уравнений (1П.2) и (П1.3) легко показать, что при одинаковой мольной концентрации растворенного вещества А5см. комб > А5см. ид и, следовательно, АОсм < АОсм. ид. [c.85]

    Измеряя зависимость п от Сг и строя ее в координатах уравнения (III. 7), можно определить значение М2. Уравнение (III. 7) представляет собой частный случай вириального разложения. В общем виде Л/С2 = ЯТ(А + А2С2 +. ..), где Ai и Лг — ви-риальные коэффициенты. Второй вириальный коэффициент учитывает отклонение раствора полимера от идеального поведения. При Лг = О уравнение (III. 7) превращается в уравнение Ваит-Гоффа для идеального раствора J1/ 2 — RTJM2. Коэффициент Л2 определяют по тангенсу угла наклона зависимости приведенного осмотического давления от концентрации раствора (рис. III. 3). [c.86]

    Таким образом, в 0-состоянии, т. е. при 0-температуре в. 0-растворителе, раствор полимера формально подчиняется законам идеальных растворов. Однако в отличие от растворов низкомолекулярных веществ это состояние для каждой данной системы реализуется лишь в определенных температурных точках. Поэтому его правильнее называть псевдоидеальным. [c.87]

    Строго говоря, раствор называется идеальным при условии AGf = 0, АЯсм = О и А5 м = 0. Для растворов полимеров эти условия, как уже отмечалось, в совокупности никогда не реализуются. Однако поведение реального раствора описывается уравнениями для идеальных систем также и в том случае, если условие AGf = О выполняется за счет взаимной компенсации энтальпийного и энтропийного слагаемых, т. е. АЯсм 0А5 м- Для растворов полимеров, равно как и для всех реальных газов и растворов, в принципе существует некоторая температура 0 = АЯсм/А5 , при которой система ведет себя, как идеальная. Все расчеты при этом значительно упрощаются. [c.88]

    Один из них — фактор разбавления — возникает при переходе от расплавов к растворам полимеров. При их описании с помощью решеточного рассмотрения лишь некоторая доля ф всех узлов решетки оказывается занята мономерными звеньями, в то время как остальная доля 1 — ф приходится на молекулы растворителя. Для расчета идеальных систем, когда энергии иопарного физического взаимодействия молекул растворителя и мономерных звеньев одинаковы, можно использовать [88] модель случайной перколяции по узлам и связям [102—105]. Согласно этой модели, любой узел решетки с вероятностью ф занят вершиной молекулярного графа или с вероятностью 1 — ф свободен. Кроме того, каждая связь на решетке, соединяющая пару смежных занятых узлов, также может быть либо занята ребром молекулярного графа, либо свободна. [c.185]

    Измерение давления пара проводят либо над предвлр1 тельно приготовленными растворами, либо пад растворами, которые обра зуются в npO ie e поглощения полимером паров растворителя Для растворов по 1Имеров характерны резко отрицательные отклонения от идеальности, что хорошо видно из рис. 151, на котором представлена зависимость относительного давления пара над раствором от мольной доли полимера в растворе. На рис, 152 приведены типичные кривые зависимости относительного давления пара над раствором полимера от состава, выраженного в весовых или объемных долях.  [c.353]

    VIII. 5) для ряда растворов полимеров показало, что экспериментальные значения ASi всюду гораздо больше особенно для растворов неполярных полимеров. Так, для системы каучук-толуол (или каучук-бензол) они в сотни раз больше (Мейер и др.) Значения д52 для каучука также гораздо больше идеальной энтропии смешения [c.177]

    В отличие от лиофобных золей, растворы высокомолекулярных веществ являются термодинамически устойчивыми обратимыми истинными растворами. Они подчиняются правилу фаз и их устойчивость определяется соотношением энергетического (ДЯ) и энтропийного (ТД5) членов в уравнении (VIII. 1). Для растворов полярных полимеров, обычно обладающих жесткими цепями, основное значение имеют изменения ДЯ, в значительной мере зависящие от сольватации. Тепловые эффекты, изменения упругости пара, сжимаемости и других свойств растворов при сольватации указывают, что наиболее прочно связанная часть растворителя составляет около одного слоя молекул вокруг полярных групп полимера (табл. 15). Для растворов неполярных полимеров с гибкими цепями основное значение имеют изменения энтропии смешения, во много раз превышающие идеальные значения, и непосредственно связанные с гибкостью макромолекул в растворах. Различные соотношения ДЯ и Д5, приводящие к возможности самопроизвольного растворения полимеров (Д2<0) приведены в табл. 16. Нарушение устойчивости растворов полимеров при понижении температуры, добавлении нерастворяющей жидкости или высоких концентраций солей приводит к различным случаям расслоения на две фазы, выпадения полимеров, высаливания белков и др. Зависимость растворимости полимеров от молекулярного [c.196]

    Внимание к диффузии в разбавленных растворах полимеров обусловлено большой ценностью информации которую дает этот метод для установления размеров, формы и гидродинамического поведения отдельных молекул в растворе . В ранних работах установле-" на практически линейная зависимость коэффициента диффузии от концентрации. Отклонение от нее наблюдали только для полимеров с небольшим молекулярным весом. В некоторых системах коэффициент диффузии с ростом концентрации увеличивается, в других — уменьшается. Установлено влияние молекулярного веса на концентрационную зависимость коэффициента диффузии. Чем больше молекулярный вес полимера, тем более резко выражена эта зависимость. Последующие работы установили более сложный характер явления. Кривая изменения коэффициента диффузии от концентрации имеет 5-образную форму. В идеальном растворителе (изопропаноле) коэффициент диффузии полибутилметакрилата не зависит от концентрации. Коэффициенты диффузии различных фракций одного и того же полимера, экстраполированные к нулевой концентрации высокомолекулярного компонента, уменьшаются с увеличением молекулярного веса. Для полимеров с молекулярным весом 10 —10 значение коэффициента диффузии имеет порядок 10 см /с. [c.31]

    Макромолекулы в растворе обычно принимают наиболее статистически вероятную конформацию, которая приближается к состоянию с максимально возможной энтропией. Согласно расчетам Куна [37] на моделях неразветвленных парафиновых углеводородов эта наиболее вероятная конформация не является ни плотной шарообразной, ни вытянутой, а представляет собой рыхлый статистический клубок. Конформация идеального статистического клубка возможна для линейных неразветвленных макромолекул, но и то только тогда, когда их движение не ограничено никакими внешними силами. Такие идеальные условия создаются в очень разбавленном растворе полимера в инертном растворителе, когда дишерюионное взаимодействие между индивидуальными макромолекулами незначительно и взаимодействие между сегментами, с одной стороны, и между сегментами и растворителем, с другой, одинаксиво. В этом случае размеры статистического клубка могут быть определены с помощью так называемой статистики случайных блужданий. [c.32]


Смотреть страницы где упоминается термин Растворы полимеров идеальные: [c.211]    [c.85]    [c.90]    [c.165]    [c.392]    [c.395]    [c.494]    [c.636]    [c.124]    [c.34]   
Физико-химия полимеров 1963 (1963) -- [ c.348 , c.385 , c.409 ]

Физико-химия полимеров 1978 (1978) -- [ c.301 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Идеальный раствор

Полимер идеальные

Раствор идеальный Идеальный раствор

Растворы полимеров



© 2025 chem21.info Реклама на сайте