Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодические химические реакции

    Задачи о колебаниях изучаются в гл. 14. Первые модели периодических химических реакций были предложены уже давно [115, 193], но только за последние годы было накоплено значительное количество данных по низкочастотным химическим колебаниям, особенно в области биохимических реакций. [c.15]

    Книга посвящена макроскопической кинетике химических реакций -законам протекания их в реальных условиях, в природе и в технике в сочетании с физическими процессами переноса вещества и тепла. В доступной для широкого круга читателей форме изложены основы термодинамической теорий процессов переноса и гидродинамической теории диффузии в многокомпонентных смесях. Рассматриваемые в книге вопросы имеют фундаментальное значение для теории процессов и аппаратов химического машиностроения, физики и химии горения и взрыва, физико-химической гидродинамики, теории периодических химических реакций и химической кибернетики. [c.494]


    Вопросы диффузии и теплопередачи в химической кинетике по-преж-нему находятся в центре внимания химической технологии и теории горения. В последней главе книги Диффузия и теплопередача в химической кинетике Давид Альбертович уделяет большое внимание периодическим химическим реакциям. В настоящее время в нашей стране проведен большой цикл исследований периодической реакции Белоусова—Жаботинского. [c.499]

    Периодические химические реакции [c.485]

    Среднетемпературный режим (250—400°С), называемый также областью "холодных" пламен, характеризуется образованием олефинов и гидропероксида. Наиболее характерной чертой окисления углеводородов в этом режиме является автокатализ процесса. Реакция начинается чрезвычайно медленно, постоянно увеличивая затем свою скорость в течение периода индукции вплоть до достижения максимального значения, за которым следует спад, связанный с выработкой углеводорода. Другая характерная особенность окисления углеводородов в этом температурном интервале — появление люминесценции, а также вспышек или медленно распространяющихся волн свечения в голубой области спектра, получивших название "холодных" пламен. Это название связано с относительно небольшим разогревом в ходе реакции, как правило, не превышающим 100-200°С. Однако более характерной чертой холодных пламен является остановка процесса при выработке лишь незначительной части исходного углеводорода несмотря на разогрев реагентов. В некоторых случаях наблюдаются повторные и даже многократные холоднопламенные вспышки или распространяющиеся пламена, т.е. периодические химические реакции. Число таких вспышек, их интенсивность и даже сама возможность их [c.166]

    Периодические химические реакции типа реакции Жаботинского -Белоусова (см. главу С в этом томе справочника). [c.352]

    Детальное экспериментальное изучение химических реакций, лежащих в основе разрабатываемого процесса, — необходимое условие для получения его надежной кинетической модели. В случае быстро протекающих реакций (время полупревращения порядка от долей секунды до нескольких минут), которые реализуются в промышленности в виде непрерывных процессов, проходящих в проточных реакторах, метод исследования кинетики в периодически действующих изотермических реакторах, кратко изложенный в этой главе, непригоден. Изучение кинетики таких реакций, к которым относятся подавляющее большинство каталитических и все газовые реакции, проводят в специальных установках проточного типа. [c.35]


    Наиболее простыми по устройству являются односекционные барботажные аппараты для взаимодействия газа (пара) с жидкостью, либо двух жидкостей, либо газа (жидкости) с зернистыми твердыми веществами. Эти аппараты применимы в случаях, когда для протекания процессов тепло- и массообмена и химических реакций достаточно одного контакта восходящего потока с одним слоем жидкости или твердого вещества. Для ускорения протекающих процессов эти аппараты часто снабжаются механическими, инжекционными, газлифтными, пульсационными и вибрационными перемешивающими устройствами. Они способствуют гомогенизации жидкой среды или зернистого материала, росту межфазной поверхности, а также интенсивности межфазного н внешнего массо- или теплообмена. В рассматриваемых аппаратах, работающих обычно в периодическом режиме, достигаются практически полное перемешивание барботируемой среды (жидкости) и определенная степень перемешивания газового потока. [c.15]

    На характер протекания химической реакции большое влияние оказывает качество смешения компонентов. Если в аппаратах периодического действия смешение производится в самом реакторе, то для непрерывно действующих реакторов, особенно при реакциях в паровой фазе, необходимо предварительное смешение. Нами уже упоминались смесители, применяемые при хлорировании. На рис. 48 показано несколько конструкций камер предварительного смешения они могут быть соединены с реактором или смонтированы отдельно от него. [c.122]

    При промышленной реализации гетерогенно-каталитических процессов приходится регулировать скорости и направления химических реакций, механизм которых известен лишь в самых общих чертах, а катализаторами служат сложные твердые вещества, свойства которых до сих пор до конца не выяснены и в состав которых могут входить почти все элементы Периодической системы Менделеева. [c.9]

    В теоретических работах [57—60], посвященных выявлению классов химических реакций на основе модельных кинетических схем, показана возможность повышения эффективности каталитических процессов, протекающих при периодически меняющихся управляющих параметрах. В связи с этим возникают задачи циклической оптимизации, тесно связанные с традиционной теорией оптимального управления. Основной целью решения таких [c.287]

    Еще сравнительно недавно экспериментатор, обнаружив, скажем, в химической реакции сложные апериодические колебания, отказывался от их исследования, ссылаясь на нечистоту эксперимента, случайные внешние воздействия и т. п. [139]. Сейчас уже стало ясно, что эти хаотические колебания могут быть связаны с самим существом дела, могут определяться основными уравнениями задачи, а не случайными внешними воздействиями они могут и должны изучаться наравне с классическими стационарными и периодическими режимами протекания процессов [140.  [c.320]

    Мембраны в общем случае следует рассматривать как распределенные системы, кинетическая модель которых описывается дифференциальными уравнениями (1.26) или (1.27). В таких системах вдали от равновесия возмущения, являясь функцией времени и координаты, могут развиваться, конкурируя со стабилизирующими их диссипативными эффектами, обусловленными нелинейностью химических реакций. Анализ устойчивости подобных систем методом линеаризации достаточно сложен. В частности, для однородных в пространстве, но периодических во времени распределений концентраций в одномерной системе с одной переменной х получено следующее решение [4] для возмущения  [c.37]

    Например, пусть в изотермическом периодическом реакторе проводят химическую реакцию первого порядка. Для описания процесса на основе физико-химических представлений получим уравнение, выражающее зависимость текущей концентрации исходного вещества С от его начальной концентрации времени процесса т и его температуры Т в виде  [c.134]

    Регрессионные модели. При, недостаточной априорной информации о технологическом процессе, например, при неизвестной кинетике химической реакции, но при наличии необходимых экспериментальных данных в качестве моделей технологических операций, осуществляемых в аппаратах периодического действия, можно использовать уравнения регрессии вида [c.88]

    Пример 11. Пусть основной технологической операцией в реакторе периодического действия является химическая реакция [c.146]

    Учитывая допущения, принятые при исследовании процесса смешения (переход осуществляется мгновенно и время между двумя переходами достаточно мало, чтобы считать систему неизменной), каждую ячейку в каждый промежуток времени между m t и (m-1-l) At можно рассматривать как периодический реактор, действующий в течение времени At. Теперь для каждого г-го компонента можно составить систему (4.53), однако в результате изменения количества перенесенного компонента за счет химической реакции появляется третье уравнение, отражающее это превращение при каждом переходе  [c.265]


    Итак, процесс суспензионной сополимеризации в периодическом реакторе сопровождается потоками тепла и массы на единичных, взаимодействующих друг с другом включениях дисперсной фазы и должен рассматриваться как процесс нестационарного тепло- и массообмена с химическими реакциями с учетом стохастических эффектов дробления — коалесценции включений, а также изменения физико-химических свойств системы. [c.274]

    Диаграмма связи массопереноса совместно с химической реакцией в гетерофазной полидисперсной системе. Рассмотрим гетеро-фазную полидисперсную систему типа газ—жидкость или жидкость—жидкость в аппарате (периодическом или непрерывном) с перемешиванием, в котором осуществляется процесс массообмена между фазами с химическими реакциями в объеме фаз. Пусть система характеризуется наличием стабилизирующих поверхностноактивных веществ (ПАВ) и масштаб турбулентных пульсаций в несущей (сплошной) фазе много больше среднего размера включений (капель или пузырей в жидкости). При этом можно предположить, что одиночный элемент дисперсной фазы полностью переносится вихрями несущей фазы и его движением относительно [c.163]

    Атомы магния и кальция (вторая группа периодической системы) легко переходят в состояние двухзарядных положительных ионов, т. е. сравнительно легко отделяют по два электрона, но отделение от них третьих и следующих электронов требует затраты гораздо больших количеств энергии и не достигается при химических реакциях. Очевидно, что более легко отделяемые электроны расположены в атоме дальше от ядра. [c.32]

    Огромный фонд данных об основных термодинамических свойствах веществ в различных условиях их существования и о параметрах химических реакций разбросан в бесчисленных статьях периодических и других изданий. Для облегчения практического использования имеющиеся данные- объединены как по виду веществ или по другим признакам, так и по характеру величин или процессов в различные общие и специализированные справочные издания. Раньше в таких справочниках стремились приводить все имеющиеся в литературе данные о рассматриваемом свойстве, что давало возможность обнаружить противоречия. [c.73]

    В заключение приведем кратко основные преимущества обсуждаемого здесь нестационарного способа осуществления химических реакций в режиме периодического изменения направления подачи реакционной смеси в неподвижный слой катализатора. [c.314]

    В то же время имеются теоретические работы, посвященные выявлению классов химических реакций на основе модельных кинетических схем, для которых доказывается возможность повысить эффективность каталитических процессов, протекающих при периодически меняющихся управляющих параметрах. В связи с этим возникают задачи циклической оптимизации, тесно связанные с традиционной теорией оптимального управления и в то же время обладающие рядом существенных особенностей, о которых будет сказано ниже. Основной целью решения таких задач является получение периодических режимов, которые значительно повышали бы эффективность процесса по сравнению с оптимальными стационарными показателями. Но, прежде чем перейти к строгой постановке и решению задач циклической оптимизации, рассмотрим для наглядности пример [31] механизма каталитического процесса, иллюстрирующий эффективность искусственно создаваемого нестационарного режима. [c.41]

    Теоретические основы метода. Идея нестационарного метода проведения каталитических процессов в режиме периодического реверса реакционной смеси изложена в работах [1, 2] и уже обсуждалась в гл. 4. Она состоит в подаче в аппарат на первоначально нагретый неподвижный слой катализатора реакционной смеси с низкой температурой при периодическом изменении направления подачи на противоположное. В результате в слое образуется медленно перемещающаяся волна экзотермической химической реакции. Значительное превышение разности между максимальной и входной температурами величины адиабатического разогрева смеси прп полной или равновесной степени превращения — характерная особенность этого нестационарного процесса. [c.200]

    Протекание некоторых гетерогенных химических реакций сонро-вождается отложением кокса па катализаторе, в результате чего активность катализатора снижается и требуется его периодическая регенерация путем выжига коксовых отложений. Степень потери активности и частота регенерации зависят от количества коксоиых [c.281]

    Чемберлен и Уолш [89] предположили, что каталитическими агентами, ответственными за холодные пламена, являются гидроксиалкилперекиси, возникающие нри конденсации на поверхности перекисей и альдегидов. Франк-Каменецкий описал периодичность холодных пламен. Лотка [941 описал систему кинетических уравнений для периодических химических процессов. Эти уравнения подтверждают предположение Франк-Каменецкого. Для этого необходимо, чтобы перекиси и альдегиды играли роль катализаторов при образовании друг друга и исчезновении по системе реакций второго порядка, таких, как [c.417]

    В промышленных условиях активность катализатора практически любого нефтехимического гетерогенно-каталитического процесса со временем уменьшается вследствие образования коксовых отложений на активной поверхности. Для восстановления основнь1х характеристик закоксованные катализаторы периодически подвергают окислительной регенерации. Окислительная регенерация закоксованных катализаторов представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом и приводящих к его удалению с активной поверхности катализатора в виде газообразных продуктов окисления. Физико-химические закономерности этих реакций определяются количеством и способностью кокса к окислению, составом газовой фазы, температурой и свойствами поверхности, на которой происходит окисление. [c.68]

    Данные о кинетике химических реакций можно получать, изучая процессы,, протекающие в реакторах периодического или непрерывного действия. При применении периодическидействую-щих реакторов исходные реагенты загружают в аппарат через определенные промежутки времени и наблюдают за ходом процесса. При использовании реакторов непрерывного действия реагенты непрерывно поступают с заданной скоростью либо в смеситель в виде сравнительно длинной узкой трубы, либо в несколько последовательно соединенных смесителей за ходом реакции наблюдают после достижения стационарного состояния в нескольких точках по длине аппарата. [c.14]

    С а л ь н и к о в И. Е., К теории периодического протекания гомогенных химических реакций, П. Термткинетическая автоколебательная модель, ЖФХ, 23, вып. 3, 258 (1948). [c.175]

    Процессы, в которых основой является жидкая фаза, проводятся в аппаратах емкостного, колонного и змеевикового типа. Аппараты емкостного типа применяют в основном для периодических процессов. Они, как правило, имеют исремеп]ивающие устройства. Колонные реакторы применяют для непрерывных процессов. Для непрерывных. химических реакций в жидкой (а иногда и в газовой) фазе применяют также змеевиковые апг[араты, в которых реагенты с большой скоростью движутся по петлевому змеевику, имеющему теплообменньге рубашки. [c.203]

    Пространственно-временная самоорганизация гетерогенного каталитического процесса. Одновременное протекание химической реакции и диффузии может привести к образованию периодических по пространству стационарных состояний — диссипативных структур [84—89]. Покажем возможность образования неоднородных стационарных состояний (макрокластеров) на примере механизма реакции окисления оксида углерода на платиновом катализаторе. Математическую модель поверхностной каталитической реакции с учетом поверхностной диффузии будем строить, исходя из следующих предположений [83]. Будем считать, что диффузия адсорбированного вещества X происходит за счет его перескока на соседние свободные места Z. Схема расположения занятых мест X и свободных мест Z на поверхности катализатора показана на рис. 7.10 (для наглядности взят одномерный случай). Пусть X, г — степени покрытия X та X соответственно, ро — вероятность перескока молекул с занятого места на свободное (микроскопическая константа), е — характерный размер решетки. Тогда скорость изменения г] = Ах М степени покрытия X в сечении [c.306]

    Химические реакции, п когорых происходят периодические изменения (колебания) концентрацией промежуточных соединений и, соответсгвеп-но, скоростей. Часто со 1ровождаю1СЯ периодическим изменением окраски. [c.73]

    Промежуточные соединения. Как указывалось выше, ряд затруднений при объяснении явлений гетерогенного катализа с точки зрения коллективных свойств электронов твердого тела, а также успехи в идентификации поверхностных адсорбированных соединений привели к возрождению чисто химических концепций в теории катализа, в обш,ем аналогичных первоначальной теории промежуточных соединений. Особое значение приобретают при этом индивидуальные свойства атомов и ионов в твердом теле, т. е. свойства, опредоляемые положением элемента в периодической системе элементов. Соответственно, как и в обш,ей теории химических реакций в.елика роль энергетических параметров самого превраш,ения.  [c.30]

    Кинетика химических реакций. В реакторах емкостного типа обеспечивается интенсивное перемешивание, поэтому при сравните,чьио небольших объемах реакционной массы эти реакторы адекватно описываются моделями идеального вытеснения во времени. Если реакция идет без изменения объема реакционной массы или его изменением можно пренебречь ввиду малости, то продолжительность основной технологической онерации в реакторе периодического действия можно определить из законов формальной химической кинетики. [c.94]

    Двухурэвневые модели. Сформируем обобщенную модель реактора периодического дгйствия, технологический цикл работы которого состоит из следующих элементарных оиераций загрузка жидкого реагента из мерника, нагревание содержимого аппарата до °С греющим паром через стенку аппарата, химическая реакция, протекающая в изотермических условиях до заданной степени превращения, последуншее охлаждение продукта до температуры I охлаждающей водой, выгрузка продукта из реактора через трубу передавливания. [c.131]

    Раньше в качестве кристаллизаторов в основном использовались аппараты периодического действия, в которых с помощью охлаждения, испарения или химической реакции повышалась концентрация кристаллизующегося вещества. Обычно КПД кристаллизатора периодического действия низок [1]. Если в режимах работы кристаллизатора допускаются ошибки, то не только не представляется возможным обеспечить заданную производительность установки, но зачастую невозможно получить кристаллы необходи- [c.155]

    Последнее соотношение явилось причиной того, что в современной физико-химической литературе скорость химических реакций и скорость превращений выражают через йс16,1. При расчетах реакторов, однако, это может вызвать путаницу, особенно для непрерывного процесса в установившемся режиме, где концентрации не зависят от времени пребывания в реакторе. Выражение d /iii в уравнении (П,3) — по сути дела не скорость реакции и пе скорость превращения это скорость изменения концентрации в реакторе периодического действия вследствие химической реакции. [c.41]

    Для того чтобы тепловой фронт не вышел из слоя, предлагается периодически изменять направление подачи смеси в слой катализатора, сохраняя в реакционном объеме часть тепла химической реакции. Профили температур на выходе из слоя катализатора (за исключением пускового периода) оказываются падающими с ростом стененн превращения. Соответствующим выбором температуры переключения, линейной скорости, размера зерна катализатора, температуры на входе можно добиться хорошего приближения к теоретическому оптимальному режиму [c.19]

    Очевидно изменение эффективности при нелинейных, кинетических зависимостях, особенно если протекает сложный процесс, где имеют место побочные химические реакции, снижающие избирательность. Так, если наблюдаемый порядок химической реакции по исходному, реагирующему компоненту выше первого, то периодическое изменение начальной концентрации или нагрузки вокруг некоторых средних значений приведет к повышению эффективности по сравнению со стационарным режимом, который определяется этими средними значениями входных параметров. Для сложного процесса существенньш оказывается соотношение скоростей (порядков) полезных и побочных реакций. По этой же причине повысится степень превращения на выходе из реактора при периодическом изменении входной температуры. Правда, при этом максимальная температура в слое может периодически ненадолго превышать допустимую по технологическим соображениям температуру, что может быть нежелательным. С увеличением частоты изменения входной температуры при неизменной амплитуде колебаний максимальная температура в слое будет понижаться. [c.124]

    Разработана математическая модель тепло-и массообмена процесса кри-стачлизации пантогама, образованного в результате химической реакции в аппарате периодического действия. [c.163]


Смотреть страницы где упоминается термин Периодические химические реакции: [c.46]    [c.9]    [c.95]    [c.103]    [c.125]    [c.169]   
Смотреть главы в:

Химические процессы в газах -> Периодические химические реакции

Кинетика и механизм газофазных реакций -> Периодические химические реакции

Кинетика и механизм газофазных реакций -> Периодические химические реакции




ПОИСК





Смотрите так же термины и статьи:

Сравнительная оценка эффективности периодической и непрерывной работы аппаратов для сложных (деградирующих) химических реакций

Формальная кинетика химических реакций, протекающих в реакторах периодического и непрерывного действия



© 2025 chem21.info Реклама на сайте