Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические свойства индивидуальных соединений

    Все межгалогенные соединения благодаря различию электроотрицательности составляющих их атомов имеют полярную связь, причем отрицательный полюс лежит в области более легкого галогена. При большом различии электроотрицательности фтора и брома (Л = 1,02) относительно высокая устойчивость, фторидов вполне понятна. Соединения брома с соседними галогенами значительно менее стабильны, причем широко используемый в анализе ВгС1 (А = 0,20) кипит с разложением, а при 25° С диссоциирует в парах на 43% константа равновесия реакции Вг2 -Н 12 2 2 ВгС1 равна 8,01 [823]. Соединение 1Вг (А = 0,30) несколько более устойчиво, но и оно при той же температуре диссоциирует на 9%. Естественно, что физико-химические свойства подобных соединений будут относиться не к индивидуальным веществам, а к их смесям со свободными галогенами, если в условиях определения наблюдается диссоциация. [c.24]


    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ИНДИВИДУАЛЬНЫХ СОЕДИНЕНИИ [c.57]

    Советский читатель, встречающийся в своей научной деятельности с указанными проблемами, имеет в своем распоряжении несколько ценных руководств — справочных изданий, например книгу А. А. Введенского Термодинамические расчеты нефтехимических процессов (Гостоптехиздат, Л., 1960) и книгу В. В. Коробова и А. В. Фроста Свободные энергии органических соединений (Изд-во моек. отд. ВХО им. Д. И. Менделеева, М., 1949). В обширном труде под руководством М. Д. Тиличеева Физико-химические свойства индивидуальных углеводородов (выпуски 1—5, Гостоптехиздат, Л., 1951—1954) собраны и обработаны термодинамические данные для многих углеводородов. Важной проблеме оценки физико-химических свойств соединений по данным о свойствах других родственных соединений посвящена книга М. X. Карапетьянца Методы сравнительного расчета физико-химических свойств (изд-во Наука , М., 1965) и книга В. А. Киреева Методы практических расчетов в термодинамике химических реакций (изд-во Химия , М., 1970). [c.9]

    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ИНДИВИДУАЛЬНЫХ СОЕДИНЕНИЙ [c.41]

    Исследование физико-химических свойств индивидуальных соединений необходимо для расчета энергетических характеристик образуемых ими твердых растворов, в частности энтальпий образования твердых растворов, что имеет большое значение для физико-химического обоснования возможности глубокой очистки веществ методом кристаллизации [1]. [c.61]

    Во втором и третьем разделах справочника кратко описана технология процессов и приведены сведения о некоторых составах и композициях, составленных на основе индивидуальных веществ и применяемых для борьбы с отложениями АСПО и солей, для обработки призабойной зоны пласта, при подготовке и транспорте нефти. Отдельной таблицей в разделе И даны физико-химические свойства и назначение органических растворителей использование растворителей как индивидуальных соединений, так и композиций на их основе, направлено в основном на удаление АСПО из пласта и ствола скважины. [c.5]

    Стабильными свойствами могут обладать лишь горючие, представляющие собой однородные химические вещества, состав которых легко может быть проконтролирован. В США ведутся работы по искусственному получению (синтезированию) углеводородов, которые по своим энергетическим и эксплуатационным свойствам могли бы заменить горючие типа керосинов и в то же время обладали бы стабильными, не изменяющимися от партии к партии физико-химическими свойствами. Такие горючие предполагается использовать как во вновь разрабатываемых образцах ракет, так и в существующих ракетах, в которых применяются горючие нефтяного происхождения. Так, например, для ракеты Атлас , двигатель которой отработан на топливе с горючим компонентом авиационный керосин марки КР-1, разрабатывается синтетическое углеводородное горючее, которое будет индивидуальным химическим соединением, имеющим физико-химические свойства такие же, как керосин КР-1. Найдены три углеводорода, которые могут заменить керосин КР-1. [c.76]


    В первом разделе справочника содержатся сведения о физико-химических свойствах химических соединений, используемых в процессах добычи и транспорта нефти в виде индивидуальных веществ или как компонент какого-либо состава. Все вещества условно подразделены на четыре группы неорганические вещества, органические вещества, макромолекулярные соединения и поверхностно-активные вещества. В каждой группе вещества расположены в алфавитном порядке, приведены их физические свойства молекулярная масса, внешний вид, плотность, температура плавления, температура кипения, растворимость и т. д. Для каждого соединения описано его назначение в используемых процессах добычи и транспорта нефти или его функциональное назначение в многокомпонентных системах. Ввиду разбросанности сведений о физико-химических свойствах индивидуальных веществ по многочисленным литературным источникам использованная в этом разделе литература сгруппирована и приведена перед таблицами, без привязки источников информации к каждому веществу. [c.5]

    В настоящем Справочнике, как и в справочнике Физико-химические свойства индивидуальных углеводородов , под редакцией проф. М. Д. Тиличеева, использована рациональная номенклатура углеводородов в соответствии с рекомендациями Комиссии по номенклатуре органических соединений при Международном союзе чистой п прикладной химии, опубликованными в 1957 г., с несущественными отклонениями в отдельных случаях (см. главу I). [c.6]

    Физико-химическим свойствам межгалоидных соединений посвящен обзор Гринвуда, дополненный Фиалковым [175]. В этом обзоре рассматриваются различные физические, термодинамические и электрохимические свойства одиннадцати соединений, которые галогены образуют друг с другом имеются данные об изменении проводимости с температурой. Перечислены работы, посвященные проводимости межгалоидных соединений в индивидуальном состоянии и в растворах. [c.29]

    В последние годы появился ряд работ, посвященных синтезу и структурному исследованию соединений бора с переходными металлами. Однако физико-химические свойства индивидуальных фаз и методы их выделения и в настоящее время изучены очень мало. Установлено, что наиболее стойкими (до температур плавления) являются дибориды переходных элементов 4-й и 5-й групп периодической системы. Эти соединения тугоплавки, химически очень инертны и трудно растворяются в обычных растворителях. Определение термодинамических свойств таких соединений является весьма трудной задачей. Прямой калориметрический метод неприменим для определения теплоты их образования, а метод калориметрического сжигания непригоден из-за трудности достижения полноты сгорания и идентификации конечных продуктов сгорания. [c.97]

    В связи с этим возросли и требования к методам определения качества и состава получаемых кислот. Такие методы, как ректификация и адсорбция, не всегда эффективны для разделения сложных смесей кислот из-за близости физико-химических свойств индивидуальных кислот и большого числа изомеров с высокими температурами кипения. Если же не выделены индивидуальные соединения, не могут быть применены такие методы анализа, как спектроскопия. [c.129]

    Наряду с прямой задачей определения физико-химических свойств различных соединений на основе их строения для практики большую роль играет и обратная задача определение состава и строения таких соединений, которые обладали бы заданными физико-химическими свойствами. Такая задача ставится не только для индивидуальных веществ, но и для их смесей и растворов. Требуется, например, определить, какое вещество из числа веществ данного ряда обладает максимальной энтальпией образования при минимальных молярном объеме и температуре кипения. Или требуется получить смесь (раствор) веществ с экстре- [c.311]

    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ, НЕФТЕПРОДУКТОВ И ИНДИВИДУАЛЬНЫХ СОЕДИНЕНИЙ, ОБРАЩАЮЩИХСЯ В НЕФТЕПЕРЕРАБОТКЕ [c.6]

    В последнее время для анализа сернистых соединений все чаще используют различные спектроскопические методы. Так, ИК-спектроскопия пригодна практически для анализа всех органических веществ, независимо от их фазового состояния — можно идентифицировать близкие по строению вещества даже в тех случаях, когда они трудно различимы по физико-химическим свойствам, Наличие данного сернистого соединения в смеси устанавливают сопоставлением ИК-спектра этой смеси с ИК-спектрами индивидуальных (эталонных) соединений. [c.157]

    В результате проведенного авторами поиска было выделено более 700 индивидуальных соединений, которые входят в составы и композиции, применяемые или экспериментально апробированные в технологической цепи добыча — подготовка — транспорт нефти . В приведенных ниже таблицах представлены их физико-химические свойства и функциональное назначение. [c.9]


    Серы двуокись (сернистый ангидрид) 502. Используется для очистки керосиновых и газойлевых фракций от ароматических соединений, для выделения индивидуальных ароматических углеводородов (бензола и толуола) из катализата риформинга, для очистки масел от смолисто-асфальтеновых веществ (в смеси с бензолом). Основные физико-химические свойства сернистого ангидрида см. в табл. 6.2. Из-за высокой коррозионности в присутствии влаги и необходимости проведения экстракции при низких температурах в настоящее время широко не применяется. [c.318]

    Автор этой книги как-то назвал период 40—50-х годов эпохой романтического рентгеноструктурного анализа. Расшифровка атомной структуры кристалла каждого соединения тогда представляла собой увлекательную задачу, похожую на решение шахматных головоломок. Каждый случай требовал своего индивидуального подхода, использования малейших намеков, содержащихся в рентгеновских данных или в общих физико-химических свойствах вещества. Применялись разнообразные весьма тонкие методы обработки экспериментального материала, призванные извлечь из него именно те детали структуры, которые представлялись ключевыми для дальнейшего продвижения в анализе атомного расположения. Высоко ценилось изящество приемов, позволявшее добиться результата с минимальной затратой времени и средств на получение экспериментальных данных и расчетные процедуры. [c.3]

    Все инструментальные методы аналитической химии - науки о способах идентификации химических соединений [47 ] - основаны на зависимости между их физико-химическими свойствами (ФХС) и молекулярной структурой, т.е. базируются по существу на теории химического строения А.N4.Бутлерова. Поскольку индивидуальные химические соединения, в том числе углеводороды, обладают присущим только им набором характеризующих констант, то логично предположить, что решая обратную задачу по значению этих констант, теоретически можно распознавать конкретные индивиды этого соединения. [c.62]

    При экспериментальном изучении индивидуальных химических соединений, состоящих из тождественных молекул, измеряемую характеристику можно считать относящейся к любой конкретной молекуле. В противоположность этому в физико-химические свойства полимерных систем вносят вклад все различные составляющие ее (I, gf)-изомеры, что соответствует усреднению но вероятностной мере на множестве молекулярных графов. Если усредняемая характеристика зависит от пространственного положения фрагментов молекулы, то на первом этапе, как и для ансамбля тождественных молекул (см. разд. 1.1), необходимо провести усреднение по всем возможным конформациям каждой молекулы. Далее можно условно выделить подсистему, содержащую молекулы одной и той же степени полимеризации I, и провести в этой подсистеме усреднение по различным конфигурациям изомеров. [c.153]

    См., например. Обрядчиков С. Н. Задачи по курсу Деструктивная переработка нефти , стр. 28—29. Гостоптехиздат, 1949 Коробов В. В. и Фроет А. В. Свободные энергии органических соединений. Изд. МО ВХО им. Д. И. Менделеева, 1950 Введенский А. А. Термодинамические расчеты процессов топливной промышленности. Гостоптехиздат, 1940 Нагиев М. Ф. Термодинамические расчеты процессоЕ переработки нефти. Гостоптехиздат, 1950 Справочник Физико-химические свойства индивидуальных углеводородов , т. II, Гостоптехиздат, 1949, [c.31]

    В ранее изданном Гостоптехиздатом шеститомном справочнике Физико-химические свойства индивидуальных углеводородов названия углеводородов были приведены по правилам льежской системы наименования органических соединений с некоторыми изменениями, которые были внесены М. Д. Тиличеевым. К на-стояш,ему времени Комиссия по номенклатуре органических соединений при Международном союзе чистой и прикладной химии разработала новые правила наименования углеводородов и простейших гетероциклических систем, которые опубликованы в 1957 г. Правила эти несколько отличаются от льежских кроме того, они не во всех случаях пригодны для использования в наших условиях, так как рассчитаны в первую очередь на страны, пользуюш,иеся латинским алфавитом, и, следовательно, требуют некоторой переработки (что, впрочем, разрешается этой же Комиссией) применительно к русскому языку. Все это позволило в данном издании не менять названий, принятых в ранее выпущенном справочнике. Ниже приведен текст основных правил современной номенклатуры, в частности применительно к соединениям ациклического ряда, где это наиболее существенно. Кое-где оказалось необходимым дать примечания. Для соединений циклического строения основы номенклатуры были подробно изложены в упомянутом выше справочнике (см. выпуск 1, стр. 14 и далее). Существенных изменений не было внесено. [c.8]

    Основными направлениями исследований являлись структурно-групповой анализ сернистых соединений нефти и их выделение синтез индивидуальных сероорганических соединений определение физико-химических свойств сероорганических соединений и отраслей их эффективного практического применения. Были идентифицированы основные типы сероорганических соединений нефтей Волго-Уральского региона, Сибири, юга Средней Азии и выданы рекомендации по их переработке. Разработаны общие схемы синтеза моно-, би- и полизамещенных тиофенов и тиофанов, усовершенствованы [c.100]

    Второй раздел является собственно справочным руководством, где приведены методы получения и физико-химические свойства индивидуальных алкил-, арил-и гетерилизоцианатов. Все соединения разбиты на три группы moho-, ди-, а также три- и тетраизоцианаты. Внутри каждой группы соединения расположены в порядке возрастания числа атомов углерода, водорода и других элементов. В таблицах указаны методы синтеза (обозначение их буквами соответствует обозначениям в теоретической части), выход продукта, если он известен, и литературные ссылки, а также основные физико-химические свойства (температура кипения или плавления, плотность, показатель преломления и др.). Спектральные данные изоцианатов ие приводятся. Соответствующая библиографическая ссылка ориентирует на литературный источник по данному вопросу. [c.3]

    Мы получим формулу, по которой можно рассчитывать физико-химические свойства Р соединений СпН2(п+1-2л). в качестве структурных элементов выбираем связи С—С, 0,-0,, С—И вместе с теми аюма-ми, которые непосредственно связаны с атомами С и С. При классификации таких структурных элементов мы будем учитывать химическую индивидуальность, валентность и распределение связей для атомов С и С, образующих связи С—С, С = С, С—Н. Для атомов, которые непосредственно связаны с этими атомами, мы будем учитывать химическую индивидуальность, валентность и кратности связей, образуемых с атомами С и С. Кратности связей с другими атомами мы не учитываем. [c.180]

    Многообразие физико-химических свойств индивидуальных фенолов не позволяет в полной мере распространить предлагаемый метод на другие группы фенольных соединений (простые фенолы, катехины, антоцианы, оксикумарины и др.), хотя названные группы соединений могут присутствовать в отдельных фракциях при проведении систематического анализа. Так, во фракции свободных фенольных соединений наряду с основными веществами могут оказаться некоторые оксикумарины, простые фенолы, катехины, а во фракции лабильно связанных — антоцианы и другие гликозидиро-ванные флавоноиды. [c.48]

    Анализ смесей хлорированных углеводородов является сложной аналитической проблемой—незначительные различия в физико-химических свойствах этих соединений затрудняют их разделение в условиях газо-жидкостной хроматографии. Большое число изомеров, образуюш,ихся при перемещении атомов хлора вдоль углеводородной цепочки, наличие геометрически различных цис-, г/ анс-конфигураций затрудняют идентификацию индивидуальных компонентов хроматографируемой смеси. Однако в опубликованных работах [1—5] рассмотрены данные преимущественно для производных этана. Сопоставимые данные удерживания хлорироизводных метана, пропана и бутана практически отсутствуют в литературе. Кроме того, в опубликованных статьях не приведены показатели теплоты растворения хлорироизводных. Наличие и Д// веществ позволяет при идентификации ограничиться двумя неподвижными фазами, а с учетом АЯ можно всегда рассчитать температурное изменение по уравнению [6]  [c.52]

    В октябре 1968 г. в США Национальным бюро стандартов издан первый том справочника, посвященный физико-химическим свойствам индивидуальных расплавленных солей. Коллективом авторов во главе с проф. Джанзом выполнена большая работа по критической оценке и систематизации имеющихся в литературе сведений относительно электропроводности, плотности и вязкости индивидуальных неорганических соединений в расплавленном состоянии. Рассмотрены данные для 175 соединений — фторидов, хлоридов, бромидов, иодидов, карбонатов, нитритов, нитратов, окислов, сульфидов, сульфатов, четырехзамещенных солей аммония. [c.9]

    Удивительным является, что для органических соединений,-кроме углеводородов и серусодержащих веществ, таких сводок до недавних пор не было . Для углеводородов есть обширный экспериментальный и расчетный материал по различным термодинамическим свойствам в стандартном состоянии идеального газа при разных температурах от 298,15 до 1000 или до 1500° К и значительно более ограниченный для других состояний. Наряду с калориметрическими методами при получении этих данных были широко использованы методы статистической термодинамики и эмпирический метод групповых уравнений (см. 45), причем в основных справочниках уже не делается указаний, каким методом получены те или иные из приводимых значений. В многотомном справочном издании Физико-химические свойства индивидуальных углеводородов , выходившем под редакцией М. Д. Тиличеева (1947—1955 гг.), в разделах, составленных А. В. Фростом и В. В. Коробовым, была дана сводка материалов, опубликованных в этой области до 1950 г. " . Вскоре (1953 г.) вышел в новом издании сводный справочник Россини, содержащий выборочные значения основйых химических термодинамических свойств углеводородов и некоторых других веществ при 298,15° К и высоких температурах. В советской литературе последних лет примерно такой же материал более или менее полно представлен в книгах А. А. Введенского Н. В. Лаврова, В. В. Коробова и В. И. Филипповой и в сборнике Физикохимические свойства индивидуальных углеводородов , вышедшем под редакцией В. М. Татевского . [c.80]

    Некоторые сведения о номенклатуре содернштся в ряде книг по орга-ганической химии. Так, специальный раздел, посвященный номенклатуре, имеется в Сборнике задач по органической химии А. П. Терентьева, М. С. Эвентовой и А. Н. Коста (Изд-во МГУ, 1951) [200]. Здесь даны важнейшие правила номенклатуры, основанные, главным образом, на изложении номенклатуры справочника Бейльштейна. Подобный же материал имеется в последнем издании учебника Б. А. Павлова [201]. Однако в силу своего учебного характера эти книги затрагивают лишь номенклатуру сравнительно простых типов органических соединений. Имеется статья М. Д. Тиличеева Терминология и обозначения углеводородов , предпосланная сборнику Физико-химические свойства индивидуальных углеводородов [183]. Отрывочные сведения по номенклатуре органических соединений имеются также в общих курсах органической химии, например, в известных учебниках А. Е. Фаворского, Н. П. Шоры-гина, А. Е. Чичибабина и других, в задачнике проф. В. А. Измаильского [202], в брошюре доц. 3. Ф. Стефановской [203], в различных справочниках [204]. [c.41]

    В связи с расширяющимся использованием металлоорганических соединений (МОС) для получения особо чистых металлов, выращивания эпитаксильных слоев и т. д. интенсивно изучаются их физико-химические свойства. Если свести к минимуму погрешности эксперимента и обработки результатов, то естественным критерием того, что измеренное свойство относится к индивидуальному веществу, является чистота исследуемого соединения. Однако изучение физико-химических свойств многих МОС часто осложняется их неустойчивостью и высокой химической активностью. Вследствие указанных особенностей вещество даже после глубокой очистки оказывается в большей или меньшей степени загрязненным продуктом его распада. Повидимому, в этом и кроются основные причины заметного расхождения в значениях физико-химических свойств алкильных соединений непереходных элементов, приведенных в сообщениях различных авторов. [c.46]

    Tqa o i MKDGib и другие свойства. Чтобы перейти к изучению реакционной способности фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, [c.269]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    В производстве бензола и его моноалкилзамещенных главная задача заключается в отделении ароматического углеводорода от сопутствующих примесей иной химической природы. При получении полиалкилбеизолов, уже начиная с дизамещенных, дополнительно приходится решать проблему разделения изомерных соединений, принадлежащих к одному классу и обладающих близкими физико-химическими свойствами. Выделить чистые индивидуальные ароматические углеводороды Сз, Сд и Сю с приемлемой для промышленности полнотой извлечения довольно сложно. И это объясняет многообразие технологических приемов, предложенных и частично нашедших практическое применение. [c.247]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]

    То, что содержащиеся в веществе примеси влияют на его свойства, было замечено задолго до того, как возникла химическая наука. Наглядный пример в этом отношении представлен в древней легенде об определении Архимедом содержания золота в короне сиракузского правителя Гиерона. Вопросу чистоты веществ в свое время большое внимание уделяли и алхимики. М. В. Ломоносов указывал на необходимость проведения научных исследований только с чистыми веществами. И уже в начале XIX в., когда в химии установилось понятие об индивидуальном веществе как химическом соединении постоянного состава, стало совершенно очевидным, что многие свойства вещества действительно определяются степенью его чистоты. Проводившиеся в то время физико-химические исследования, как правило, требовали очистки веществ не от каких-либо отдельных примесей. а от примесей вообще, ибо физико-химические свойства веществ от природы примесей практически не зависят вследствие слабой зависимости от природы веществ сил межмолеку-лярного взаимодействия, определяющих эти свойства. [c.4]

    Актуальность работы. В настоящее время активно изучаются вещества, способные менять свое строение и физико-химические свойства в зависимости от изменения внешних условий (давление, температура, pH среды, лазерное освещение и другие). В связи с этим особый интерес вызывают фта-лиды, для которых возможно существование в циклической и линейной формах. Они представляют собой индивидуальные соединения, переход которых из одной формы в другую происходит при изменении внешних факторов. Еще большее значение имеет изучение свойств полимерных материалов, содержащих функциональные группы меняющегося строения. Так, фталидсодержащие полимеры обладают уникальными электрофизическими и оптическими свойствами. Но последние сочетаются с высокими температурами стеклования и текучести, а также с плохой растворимостью в большинстве растворителей. Этих недостатков лишены многие виниловые полимеры, в частности полиакрилаты, синтезируемые чаще всего методами радикальной полимеризации. Поэтому важным представляется введение ненасыщенных фталидов в акриловые полимеры, прежде всего, на стадии синтеза последних. Однако о получении, строении, поведении ненасыщенных фталидов в радикальной (со)полимеризации известно очень мало. [c.3]


Смотреть страницы где упоминается термин Физико-химические свойства индивидуальных соединений: [c.120]    [c.496]    [c.108]    [c.358]    [c.99]    [c.299]    [c.221]    [c.299]   
Смотреть главы в:

Карманный справочник нефтепереработчика -> Физико-химические свойства индивидуальных соединений

Карманный справочник нефтепереработчика -> Физико-химические свойства индивидуальных соединений




ПОИСК





Смотрите так же термины и статьи:

Химическое соединение



© 2025 chem21.info Реклама на сайте