Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия и природа вещества

    Энтропия и природа вещества [c.41]

    Вещество может растворяться самопроизвольно, когда энергия Гиббса уменьшается АО=АЯ—ТД5, ДС<0. При растворении вещества (особенно в твердом состоянии) энтропия системы увеличивается А5>0. Как правило, растворимость твердых веществ в жидкостях растет при нагревании и зависит как от природы вещества, так и от природы растворителя. На рис. 8.1 в качестве растворителей взяты НаО, СНзОН, СгНбОН. Анализ кривых раст- [c.196]


    Подобие критических явлений в объектах разной природы позволяет рассматривать их с единой точки зрения. В 19 веке наиболее полно были исследованы переходы пар - жидкость и газ - жидкость. В работах Ван-дер-Ваальса, Клаузиуса, Дитеричи было получено приведенное уравнение состояния и сформулирован закон соответственных состояний [12] для приведенных величин. Приведенные значения получают делением количественных значений свойств на критические свойства. Согласно закону соответственных состояний у сходных по природе веществ приведенное давление насыщенного пара является универсальной функцией температуры, а энтропия парообразования является универсальной функцией приведенной температуры (уточненное правило Трутона о равенстве отношений теплот парообразования различных жидкостей к их температурам кипения). Питцер и Гутенгейм развили теорию соответственных состояний для жидкостей. Для всех объектов существуют определенные физические величины, температурная зависимость которых вблизи точек переходов различной природы почти одинакова. Отсюда следует предположение об изоморфно-сти критических явлений термодинамические функции вблизи критических точек одинаковым образом зависят от температуры и параметра порядка при соответствующем выборе. термодинамических переменных. [c.21]

    В табл. 18-1 сравниваются теплоты и энтропии испарения ряда распространенных жидкостей. Прежде всего можно заметить, что энтропии испарения всех жидкостей приблизительно одинаковы. Неупорядоченность, вносимая в систему из 6,022 -10 молекул, находящихся в тесном контакте в жидкости, когда их разъединяют при образовании пара из жидкости, сравнительно мало зависит от природы этих молекул. Это обобщение известно под названием правила Трутона, по имени ученого, который установил его эмпирически в XIX в. Наиболее высокие молярные энтропии испарения, превышающие молярные энтропии других веществ на 10-20 энтр. ед., имеют метанол, этанол и вода. Повышенные энтропии испарения этих веществ объясняются тем, что их полярные молекулы удерживаются в жидкости друг возле друга силами диполь-дипольного взаимодействия и водородными связями. Повышенная степень упорядоченности жидкости означает, что для образования из нее газа требуется внести несколько большую неупорядоченность. Поскольку для разъединения взаимодействующих молекул такой жидкости требуется больше энергии, теплота ис- [c.123]


    Энтропия и природа вещества. Как и в случае АН. (АЯ дв), различие в значениях 5г (5 98) отражает лишь различие в свойствах веществ. Это весьма важное обстоятельство позволяет привести ряд примеров, свидетельствующих о связи между энтропией и природой вещества. [c.95]

    Введение- стандартных энтропий позволяет поставить вопрос о связи между энтропией и особенностями веществ, так как разница в значениях La ( г) отражает (при одинаковом агрегатном состоянии) лишь различие в природе веществ. [c.435]

    Так, например, молекулы оксида серы SO2 внедряются в полости кристаллической решетки гидрохинона, в которой молекулы гидрохинона соединены водородными связями, образуя типичный клатрат. В этом клатрате параметры решетки хозяина , вообще говоря, не зависят от природы молекул гостей , хотя крупные молекулы могут вызвать некоторое искажение решетки. Решетка ве-щества- хозяина в чистом виде (без гостей ) отличается от решетки, свойственной клатратному соединению. Часто не удается получить вещество- хозяин в чистом виде в той форме решетки, какая существует в клатрате. Изменение термодинамических параметров процесса включения гостя в решетку хозяина соответствует убыли энтропии газообразного вещества гостя и возрастанию термодинамической функции, определяющей равновесие (например, энергии Гиббса при постоянных р я Т). [c.271]

    Количественная термография. Метод ДТА может быть успешно применен для количественного определения теплот (и энтропий) фазовых переходов, в частности плавления, которые вместе с температурой плавления являются параметрами стабильности, необходимыми для термодинамического расчета диаграмм состояния. Площадь пика на дифференциальной кривой, соответствующего тепловому эффекту фазового перехода, зависит от ряда факторов 1) теплового эффекта, определяемого природой вещества 2) массы вещества и эталона, их теплопроводности, теплоемкости и т. п. 3) внешних условий (скорость нагрева, положение спаев термопар, форма сосудов, степень измельчения вещества, степень набивки сосуда и др.). Если стандартизировать условия записи, т. е. исключить влияние 2-й и 3-й групп факторов, то площадь пика дифференциальной записи будет пропорциональна величине теплового эффекта 5 = kQ, где 5 — площадь пика Q — тепловой эффект к — коэффициент пропорциональности. [c.11]

    Теперь после того, что было сказано выше, мы введем свою трактовку термодинамики поверхностей хотя типичная межфазная поверхность является резкой в макроскопическом масштабе, она, в общем, диффузна в микроскопическом масштабе. Как следствие того факта, что концентрации компонентов изменяются пространственно, должно происходить соответствующее пространственное изменение плотностей энергии и энтропии. В соответствии с молекулярной природой вещества, а также и потому, что энтропия и внутренняя энергия не есть свойства единичных молекул, функции, представляющие плотность энтропии и энергии, не являются однозначными. Эти функции, однако, должны удовлетворять следующему требованию их значения должны стремиться к значениям в объеме при удалении от поверхности, кроме того, их структура должна быть максимально простой математически. [c.66]

    Алмаз — бесцветное, прозрачное, сильно преломляющее свет вещество. Он тверже всех найденных в природе веществ, но довольно хрупок. Кристаллы алмаза имеют координационную структуру, в которой атомы углерода связаны друг с другом направленными рЗ-гибридными связями. ГЦК-структура алмаза отличается от ГЦК-структуры меди тем, что углеродные атомы располагаются не только на гранях куба, но и в центрах малых кубов (октантов), чередующихся с пустыми малыми кубами. Каждый атом углерода имеет четыре ближайших соседа (валентность и к.ч. 4), расстояние между которыми 0,154 нм. По отношению к любому атому углерода четыре ближайших соседних атома расположены в вершинах правильного тетраэдра. Поэтому структуру алмаза можно представить в виде комбинации тетраэдров, у которых в центре находится пятый атом углерода. Каждая вершина тетраэдра является общей для четырех смежных тетраэдров. Непрерывная трехмерная сетка ковалентных связей, которая в алмазе характеризуется наибольшей прочностью, определяет его важнейшие свойства низкое значение энтропии, тугоплавкость, высокую твердость, плохую теплопроводность и электрическую проводимость, а также химическую инертность. [c.358]

    Уравнение (IV, 79), в соответствии с которым энтропия испарения не зависит от природы вещества, как известно, удовлетворительно соблюдается для высококинящих жидкостей, обладающих близкими свойствами (строение, полярность и т. д.). В применении к 1 молю вещества при = [c.164]

    В то же самое время, по причинам, которые трудно объяснить кратко и понятно, свободная энергия уменьшается. Скорость уменьшения свободной энергии зависит от природы вещества и называется энтропией (5) вещества .  [c.56]


    Тепловая теорема Нернста не является необходимой для решения задач о тепловых машинах и других чисто физических проблем, но составляет неотъемлемую часть химической термодинамики. Первая вполне удовлетворительная формулировка третьего закона была дана Льюисом и Рэндаллом [379, стр. 448] Если принять энтропию всякого элемента в некотором кристаллическом состоянии при абсолютном нуле температуры равной нулю, то каждое вещество имеет конечную положительную энтропию-, однако при абсолютном нуле температуры энтропия может обращаться-в нуль и действительно становится равной нулю в случае совершенных кристаллических веществ . В связи с определением совершенного кристаллического вещества третий закон является единственным постулатом термодинамики, который требует по крайней мере частичного рассмотрения микроскопической природы вещества. Таким образом, при помощи методов классической термодинамики нельзя достичь полного понимания третьего закона для этого требуется применение квантовой статистики, о чем пойдет речь в следующем разделе. Коротко говоря, методами статистической термодинамики было показано, что энтропия системы непосредственно связана с ее количественно выражаемой вероятностью. Неупорядоченность в природе более вероятна, чем упорядоченность, а, следовательно, состояние максимальной упорядоченности имеет минимальную вероятность и об-ладает соответственно минимальной энтропией. Поэтому состояние нулевой энтропии соответствует совершенному порядку, достигаемому только при 0° К, так что совершенное кристаллическое вещество — это такое вещество, в котором не наблюдается какой бы то ни было неупорядоченности. Такое вещество имеет следующие характерные особенности а) абсолютная-химическая чистота б) упорядоченное расположение ионов, атомов или молекул в регулярной решетке в) упорядоченная ориентация всех многоатомных групп по отношению к решетке и г) упорядоченное положение магнитных моментов атомов. Многие факторы могут вызывать несовершенства реального состояния вещества вблизи абсолютного нуля. Любая неупорядоченность расположения молекул в узлах решетки приводит [c.12]

    Значення ДЯ, AS и AG реакции зависят не только от природы реагирующих веществ, но и от их агрегатного состояния и концентраций. Для получения сравнимых данных, характеризующих различные реакции, сопоставляют стандартные изменения энтальпии AHj, энтропии и энергии Гиббса [c.81]

    Кроме теплоемкости большое значение имеют тер.модинамиче-ские свойства, называемые также термодинамическими фуггкцня-ми, к которым относятся энтальпия, энтропия и энергия Гиббса. Эти термодинамические свойства в значительной мере связаны с химической природой элементарных веществ и обусловливают ход процессов, в которых элементарные вещества участвуют. [c.115]

    В окружающей нас среде можно выделить в качестве термодинамического объекта фазово-открытые системы. Это часть пространства, отделенная оболочкой от внешней среды и обменивающаяся с ней энергией и веществом. Между этими системами могут протекать само- и несамопроизвольные процессы, неотделимые один от другого. Так, например, при расширении газа (самопроизвольный процесс) в приборе Джоуля—Гей-Люссака в одной части его происходит падение давления (самопроизвольный процесс), а в другой части возрастание давления (несамопроизвольный процесс) и последний как бы создает противодействие первому, то есть оба процесса проходят одновременно, непрерывно и взаимозависимо. Также протекают процессы и в природе. Это позволяет сформулировать следующую теорему в фазово-обособленных открытых системах одновременно, непрерывно и взаимосвязанно проходят самопроизвольные и несамопроизвольные процессы, причем самопроизвольные процессы протекают с возрастанием в системе энтропии и уменьшением свободной энергии, а несамопроизвольные — с уменьшением энтропии и возрастанием свободной энергии. [c.97]

    Принимая во внимание молекулярную природу рабочего вещества и флуктуации в нем внутренних параметров, можно отметить, что без установления равновесия в системе максимальное значение энтропии невозможно достигнуть. Флуктуации приводят систему к равновесию. Именно флуктуации в системах приводят к необходимости максимума энтропии при равновесии всякий раз, когда это условие не выполняется, то есть система выведена из равновесия. [c.141]

    Значения А Н° Т) и / в уравнениях (78.3) и (78.4) будут зависеть не только от природы реагирующих веществ, но и от той области температур, в которой выбран рассматриваемый интервал температур. Из сопоставления (69.29) и (78.3) следует /= —Аг5°, где Д5° — изменение энтропии в результате реакции. Если температурный интервал Га —Т, небольшой, то на основании уравнения (78.4) будем иметь [c.257]

    Переходя в кристаллическое состояние, вещество освобождается от некоторой части своей энергии. Кристаллическое состояние характерно для неживой природы. В аморфное же состояние вещество переходит, аккумулируя энергию. Аморфное, точнее непериодическое строение вещества более характерно для живой природы. Известно, что в организмах с полной воспроизводимостью синтезируются сложнейшие вещества непериодического, но регулярного строения. Механизм биосинтеза в главных чертах известен. Его важнейшая особенность — принудительная, а не самопроизвольная, как в обычных процессах отвердевания, укладка структурных единиц с затратой, а не выделением энергии в окружающую среду. Энергия, необходимая для перемещения и укладки структурных единиц, т. е. для понижения энтропии системы, доставляется химическими реакциями. Заметим, что первичным ее источником является солнце. [c.161]

    Изменение энтропии при растворении обусловлено не только фазовым превращением (если растворяемое вещество и раствор находятся в различных агрегатных состояниях), но и взаимодействием компонентов раствора . Суммарный энтропийный эффект зависит и от природы веществ, и от температуры (при растворении газов — от давления), и от концентрации. Так, крупные однозарядные ионы разупорядочивают, а ионы с небольшими радиусами упорядочивают структуру воды. Поэтому знак изменения энтропии воды под действием ионов и Сз противоположен. Для ионов Ыа" эта величина близка [c.99]

    Опыт преподавания физической химии и химической термодинамики приводит к убеждению, что химизация этих курсов способствует их усвоению и их использованию. С другой стороны, многолетнее чтение курса общей и неорганической химии убедило автора в необходимости его термодинамизации, что не только способствует повышению научного уровня этого курса, но и подготавливает студента к восприятию материала термодинамических разделов курса физической химии и курса самой химической термодинамики, повышая тем самым уровень преподавания фундаментальных химических дисциплин в целом и обеспечивая их эффективность. Все это побудило несколько усилить элементы эмпирической термодинамики в предлагаемом издании. В частности, отражена связь термодинамических свойств с природой веществ, с периодическим законом Д. И. Менделеева, даны некоторые дополнительные примеры использования приближенных методов расчета. Ограничения объема книги не позволили, однако, осуществить это в должной мере. В достаточно полной степени это было сделано лишь для энтропии, понимание смысла которой обычно вызывает у студентов затруднения. [c.10]

    Сопоставление выражения (1.5) с (1.3) показывает, что постоянная а представляет собой сгущение энтропии в поверхностном слое Т1 (практически не зависящее от текшературы). Приведенные в табл. 1 экспериментально найденные значения а=г] свидетельствуют о том, что величина сгущения энтропии слабо зависит от природы вещества и для очень лшогих веществ близка к 0,1 мДж/(м К). В пересчете на одну М(Олекулу (или, грубо говоря, на одну степень свободы) в поверхностном слое (10 молекул/м при размере vюлeкyл 0,3 нм) сгущение энтропии составляет 22 [c.22]

    Тепловой эффект растворения завпсит от природы веществ и от их соотношения. Добавление растворителя к раствору обычно сопровождается тепловым эффектом, и только разбавление уже разбавленных растворов не сопровождается тепловым эффектом. Для таких очень разбавленных (идеальных) растворов энтальпия не зависит от объема (А// = 0), однако энтропия с увеличением объема при постоянной температуре увеличивается (см. 1.28) и за счет нее уменьшается G. Это вытекает из (1.24). При АЯ==0 AG = — 1 AS. В обо 1,ем случае растворение есть сложный физико-химический процесс, тепловой эффект которого Qpa Ti ==—АЯ алгебраически складывается из теплоты сольватации Q (экзотермический процесс), теплоты, затрачиваемой на разрушение кристаллической решетки Ореш пли на нспарение (если растворяется жидкость в жидкости), и теплоты, затрачиваемой на распределение сольватированных частиц по всему раствору Сд. Так как Сд обычно мала, то ею можно пренебречь. Тогда при Q > Qp ui Qpa Tn>0 и при [c.188]

    Рассматривая свои собственные данные, наряду с данными других исследователей, Бетлер и Рейд пришли сначала к выводу, что в целом энтропии гидратации поразительно независимы от природы вещества и зависят, повидимому, только от величины растворяемой молекулы, увеличиваясь с ее увеличением. Так, энтропия гидратации (—Д5) благородных газов возрастает от гелия к радону, а в гомологических рядах она возрастает примерно на 5 единиц на каждую новую СН. группу. Это свойство энтропии имеет большое значение для относительных растворшюстей гомологов. Из уравнения 47 следует, что если Д5 оказывается постоянной величиной, то теплота растворения будет определять растворимость, так как последняя зависит от —АР. Так как —АН возрастает с увеличением молекулярного веса (табл. 8), то это определяет изменение растворимости. Наблюдаемое же понижение растворимости связано, таким образом, с указанным свойством энтропии возрастать с увеличением размеров растворяемых молекул. Бетлер и Рейд высказывают мысль, что такое влияние энтропии должно быть характерным для ассоциированных растворителей. [c.392]

    Впервые возможность применения закона соответственных состояний к жидкостям с цепными молекулами была показана При-гожиным и сотр. [26]. В приведенном виде можно получить любую мольную термодинамическую функцию таких веществ. Конфигурационная энергия, объем, конфигурационная энтропия и т. д. полимерной жидкости являются функциями температуры И числа атомов п в цепи [1/(7, п) 11 Т,п) 8 Т,п) и т. д.]. Приведенная величина не должна зависеть от природы вещества и должна быть функцией только температуры. Для этого нормирующий параметр, или параметр приведения (Уо, о, о и т. д.) должен быть функцией только природы вещества, т. е. для гомологического ряда веществ должен зависеть только от п. [c.359]

    Самые различные процессы в природе сопровождаются выделением или поглощением тепла, количество которого определяется характером процесса и калорическими свойствами исследуемого вещества (твердого тела, жидкости, газа и др.). Важнейшим из термодинамических свойств является теплоемкость, которая позволяет исследовать структуру образца и силы взаимодействия атомов и атомных групп в молекуле детально изучить и выявить энтропию системы, фазовые переходы, критические явления, состояние адсорбированного вещества определить количество примесей в веществе или растворе многокомпонентной жидкости вычислить характеристические термодинамичеокие функции различных систем и сред и констант равновесия их и др. [c.29]

    Сворктва идеальных растворов, подобно свойствам разреженных газовых смесей, не зависят от природы растворенного вещества, а определяются лишь их концентрацией. Следовательно, единственной причиной их образования (как и образования газовых смесей) является возрастание энтропии при смешении. Для идеального раствора А5раств =Ь0 (так как растворение связано с изменением величины 10 для любого раствора). Однако А5смеш. в этом случае не будет зависеть от природы компонентов, а однозначно определится их соотношением (мольными долями). [c.137]

    Сначала рассмотрим изолированную термодинамическую систему, т. е. однородную сплошную среду постоянной массы без обмена веществом и энергией с окружающей средой. Состояние такой системы однозначно описывается двухсвязным С-полем, отражающим взаимосвязь между параметрами тепловой (абсолютная температура Т, энтропия 8) и механической (давление Р, объем V) природы [c.126]

    Таким образом, энтропия поликомпонентности ифает созидающую роль в процессе эволюции природы. В этой связи справедливы ли рассуждения о тепловой смерти вселенной и негоэнтропии ЭПК важна для понимания процессов химической эволюции и самоорганизации вещества и означает отличную от нуля [c.29]

    Цепочка марковских энергетических состояний системы (3.6) имеет следствие - кинегический компенсационный эффект (КЭФ). Проявление КЭФ давно известно и заключается в линейной зависимости между энтропией ак1ивации п ко и энергией активации. Для многокомпонентной системы с ростом эффективной энергии активации увеличивается число микросостояний, которые должны возникнуть в смстеме для протекания какой-либо реакции, при этом энтропия акгивации возрастает. При этом энтропия процесса на макроуровне (ЭРК) может уменьшаться, так как система обедняется химически активными компонентами. По мере обеднения среды активными компонентами с ростом энергии активации должна возрастать аррениусовская предэкспонента в выражении для константы скорости, то есть в МСС должен наблюдается КЭФ На рис 3 1а пока аи КЭФ в процессе термолиза различных по природе многокомпонентных высокомолекулярных фракций [26] и индивидуальных веществ (рис.3.1.б). [c.41]


Смотреть страницы где упоминается термин Энтропия и природа вещества: [c.41]    [c.337]    [c.20]    [c.15]    [c.157]    [c.468]    [c.56]    [c.16]    [c.264]    [c.221]    [c.10]    [c.10]    [c.11]    [c.21]    [c.351]   
Смотреть главы в:

Введение в теорию химических процессов -> Энтропия и природа вещества




ПОИСК







© 2025 chem21.info Реклама на сайте