Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство электропроводность

    Для производства электропроводного полотна применяется смесь бутилкаучука или полиизобутилена с графитом и ацетиленовой элементной сажей. [c.170]

    Электропроводные пластмассы хорошо воспринимают гальваническую металлизацию. Однако предварительно с них требуется механическим или химическим способом снять поверхностный слой, обычно отличающийся плохой электропроводностью [12]. Применение токопроводящих наполнителей увеличивает вес и стоимость полимерного материала. Сажа и графит ухудшают механические характеристики некоторых полимеров. В связи с этим производство электропроводных пластмасс в технике широкого распространения не получило. [c.143]


    При непрерывном процессе производства электропроводные листы после обрезания кромок приклеиваются к цинковым листам. Склеивание листов производится клеем, представляющим собой раствор бутилкаучука в бензине 1 20. Бутилкаучук разрезается на мелкие куски, помещается в большой стеклянный ста- [c.185]

    Термические и ламповые сажи широко применяют в комбинации с газовыми канальными и печными сажами для изготовления формовых изделий. В производстве электропроводных резин нашли применение ацетиленовые сажи. [c.43]

    Какие свойства этого металла предопределили его использование в электрических генераторах Конечно, пластичность меди сделала очень удобным изготовление из нее сложных изогнутых конструкций генераторов. Кроме того, очень полезным свойством меди в этом случае является ее хорошая электропроводность. При производстве столь больших дорогих машин, несомненно, хорошо и то, что медь — коррозионно-стойкий материал. [c.148]

    Наличие минеральных примесей в коксе приобретает особое значение в случае применения его для алюминиевого производства, так как эти примеси, переходя в алюминий, снижают его электропроводность. [c.143]

    Как уже указывалось, нефтяные коксы могут использоваться в народном хозяйстве в сыром виде и после предварительной обработки. При использовании кокса в электродной промышлеиности (производство электродов, анодов, конструкционных материалов) он должен пройти стадию прокаливания при ПОО—1300 °С, в результате чего упорядочивается его структура, увеличивается тепло- и электропроводность, уменьшается содержание неуглеродных элементов и улучшаются другие его свойства. Для удаления гетероэлементов, в частности серы, требуются более жесткие условия. Так, температура обессеривания сернистых коксов находится в пределах 1400—1600°С. [c.195]

    Выход и качество нефтяного кокса зависят прежде всего от состава сырья и условий процесса (температуры, давления, длительности пребывания сырья в реакторе). Завершающей стадией производства электродного кокса является его облагораживание, заключающееся в карбонизации (при 500—1000 °С) и прокаливании (при 1100—1500°С). В результате из кокса удаляются летучие вещества, упорядочивается его структура, увеличиваются теп-ло- и электропроводность, уменьшается содержание неуглеводородных элементов и улучшаются другие свойства. Удаление гетероэлементов (прежде всего серы) осуществляется при 1500— 1700°С, а графитирование — при 2200—2800 °С. [c.394]

    Антрацит является основным компонентом угольных электродов и разнообразных угольных блоков для кладки и футеровки печей. Антрацит применяется в электродном производстве после длительной термообработки при температуре 2500 С в электрических печах в виде термоантрацита. Основные требования к качеству этого вида сырья - высокая электропроводность, механическая прочность, термическая стойкость, низкая зольность и сернистость. Некоторые сорта антрацитов используются в производстве искусственного графита. [c.10]


    Один из распространенных методов заключается в том, что обоим материалам сообщают электропроводность . Этого можно достигнуть, вводя в полимер электропроводящие добавки, такие, как технический углерод или этилированные амины. Этим методом пользуются для таких изделий, как топливные трубопроводы, топливные баки, конвейерные ленты, токопроводящие обувные подошвы. В производстве синтетических волокон применяют нанесение тонкого токопроводящего слоя антистатика. Этот способ не столь надежен, как предыдущий, поскольку непрерывность слоя антистатика легко нарушить в процессе обработки или промывки волокна. [c.94]

    В связи с тем, что сырья для производства кокса, как правило, не хватает, используются смеси различных остатков переработки. Их состав влияет на коэффициент термического расширения кокса, а следовательно, на электропроводность и в целом качество кокса (табл. 2-2). [c.36]

    Статическое электричество. Возникновение статического электричества при трении диэлектриков — хорошо известный процесс, с проявлениями которого приходится сталкиваться как при переработке, так и при эксплуатации эластомеров. Возникновение статического электричества может служить источником пожароопасности на производствах, а также приводит к попаданию в резиновые изделия нежелательных примесей. Опасность возникновения статического электричества сохраняется при эксплуатации резиновых изделий вследствие низкой электропроводности. Основной способ уменьшения количества электричества, образующегося при трении, — увеличение электропроводности трущегося материала. Применительно к резиновым и резинотканевым изделиям это означает необходимость использования электропроводящих резин, т. е. резин, наполненных специальными электропроводящими типами технического углерода. Другой способ снижения количества электрических зарядов, скапливающихся на поверхности изделий, — увеличение электропроводности воздуха за счет его ионизации источниками ионизирующего излучения (например радиоактивного у-излучения малой [c.74]

    Для повышения электропроводности агломератной массы в нее вводят графит. Элементы, содержащие массу с малым количеством графита, обладают повышенной емкостью, но более высоким внутренним сопротивлением. Такие элементы не пригодны для разряда большим током. В производстве обычно применяют природный предварительно обогащенный графит, содержащий около 90% углерода. [c.31]

    Олово — один из немногих металлов, соли которого не токсичны. Поэтому почти вся металлическая пищевая тара, а также металлическая посуда и аппараты для хранения и производства пищевых продуктов покрываются оловом. Значительная доля расходуемого для этой цели олова идет на оловянирование консервной жести. В некоторых пищевых средах, в том числе во многих консервах, олово в паре с железом ведет себя анодно и, следовательно, защищает сталь электрохимически. В связи с этим, а также с целью экономии олова консервную жесть покрывают слоем очень малой толщины 0,5—1,5 мкм. Оловянирование применяют также для придания и сохранения хорошей электропроводности поверхности контактов, для улучшения их паяемости и других специальных целей. [c.388]

    Названные методы имеют большое практическое значение для автоматизации контроля производства. Очевидно, электроды для измерения потенциала или для измерения электропроводности могут быть установлены непосредственно внутри производственных аппаратов. Измерительный же прибор может быть вынесен к пунктам управления технологическим процессом. Прибор для измерения потенциала или электропроводности может быть соединен с регистрирующим аппаратом, и, таким образом, получается непрерывная запись изменения концентрации раствора во время хода процесса. [c.435]

    Очень важная область применения металлического алюминия связана с его высокой электропроводностью. Сюда относится производство большого числа изделий и деталей в электротехнической промышленности, применение алюминия для проводов и т. п. [c.77]

    Качество основной и вспомогательной продукции химических производств, производимых химической промышленностью материалов, а также решение комплексных задач исследования в значительной мере зависят от аналитического контроля. При современном непрерывном превращении химических веществ в процесс - производства только применение экспрессных методов качественного и количественного анализа и методов обработки полученных данных обеспечивает оптимальное ведение производства. В настоящее время для ведения процесса уже непригодны классические ( ручные ) методы. анализа, проводимые в лаборатории, а также простое измерение физических свойств веществ (например, плотности, электропроводности) без дальнейшего их использования или измерение параметров процессов (давления, температуры). Важнейшими побудительными причинами автоматизации и внедрения техники в аналитический контроль являются технические и экономические требования к получению информации более высокой ценности (небольшая продолжительность анализа, лучшая селективность, более высокая точность и чувствительность методов аналитического контроля), а также необходимость снижения затрат рабочей силы и экономии мощностей. Внедрение техники в аналитический контроль осуществляют путем механизации, применения инструментальных методов контроля или автоматизации [А.1.1 —А.1.4]. [c.427]


    Церий используется в качестве добавки прн производстве магниевых и алюминиевых сплавов. Так, добавка его в количестве 0,2% к алюминию значительно повышает его механические свойства и электропроводность. [c.427]

    Висмут и его соединения. Висмут (В1 — ат. в. 209)— в чистом виде металл с красноватым отливом, кристаллического строения, хрупкий. Обладает тепло- и электропроводностью. Применяется для приготовления легкоплавких сплавов, а также как катализатор в некоторых производствах. Соединения висмута применяют как краски в живописи, в производстве специальных сортов стекла, в медицине и т. д. [c.488]

    Медь является самым распространенным из цветных металлов—мировое производство ее составляет сейчас свыше 3,5 млн. т в год. Широкое применение меди обусловлено ее высокой электропроводностью, устойчивостью против коррозии, пластичностью. Используется медь, в основном, в электротехнической и радиотехнической промышленности (свыше 50% всего потребления) и в производстве сплавов на медной основе (латуней и бронз). [c.8]

    Целью настоящей работы явилось исследование влияния технического углерода Хезакарб ЭЦ на электрические и физико-механические свойства резиновых смесей иа основе каучуков СКС-ЗОАГКН и СКН-26М, частично используемых в-производстве электропроводных резиновых технических изде- [c.18]

    РегОз и его производные (ферриты) широко используют в радиоэлектронике как магнитные материалы, в том числе как активные вещества магнитофонных лент. Благодаря высокой химической стойкости и электропроводности Рез04 служит материалом для изготовления анодов в ряде электрохимических производств. [c.570]

    Электрообработку стока проводили в кювете с плоскими параллельными алюминиевыми электродами, находящимися на расстоянии 20 мм друг от друга. Электропроводность смешанного стока примерно в 10 раз больше, чем электропроводность сточной воды производства полистирола. Вследствие этого режим злектрообработки, выбранный для сбросных вод производства полистирола для смешанного стока применять нельзя. [c.103]

    Битумы торфа и бурых углей богаты восками. Воски, очищенные от смол, называются горным воском или моптап-воском. Это ценный продукт химической переработки твердого топлива. Он обладает рядом таких важных свойств, как высокая температура плавления , низкая электропроводность, водонепроницаемость и кислотостойкость, которые обеспечивают ему широкое применение в различных отраслях промышленности. Монтап-воск используется в электротехнической промышленности для изготовления изоляционных материалов, в полиграфической и бумажной промышленности для производства копировальной бумаги, лент для пишущих машинок и восковой бумаги, в кожевенно-обувной промышленности для приготовления кремов для обуви, мазей и аппретур [35, с. 553]. [c.154]

    Для защиты высокопрочных сплавов наиболее широко применяют плакирование. В качестве плакирующего слоя используют чистый алюминий или сплав алюминия с 1% 2п. Толщина плакирующего слоя составляет от 2 до 7,5% от толщины основного металла. Плакирование листов и плит происходит в процессе горячей прокатки, для производства труб с внутренней плакировкой применяют полые слитки, в которые вставляют трубу из алюминия. При прессовании слой алюминия прочно приваривается к основному металлу. Плакирующий слой является обычно анодным по отношению к сердцевине, поэтому его защитное действие носит не только изолирующий, но и электрохимический характер, в результате чего даже те участки алюминиевого сплава, на которых плакировка нарушена, защищены от коррозии. Эффект электрохимической защиты тем выше, чем больше электропроводность среды. Так, при разрушении плакирующего слоя по длине образца на 25 мм потеря прочности сплава Д16Т в морской воде составила 5%, а в 0,01%-ном растворе хлористого натрия — 35%. В меньшей степени плакирующий слой защищает электрохимически в условиях атмосферной коррозии. В хорошо проводящей коррозионной среде эффективность электрохимической защиты плакирующего слоя снижается по мере уменьшения разности потенциалов между металлами плакировки и металлом защищаемого сплава. [c.62]

    Производство угольных материалов связано с тем, что они используются для изготовления анодов и элементов фзгтеровки электролизеров. Эти детали работают прИ весьма жестких условиях и должны удовлетворять определенным тх>ебованиям по термостойкости, механической прочности, электропроводности и стойкости к расплавленным солям. Углеродистые материалы делят на футеровочные блоки, обожженные аноды и годные массы для самообжигающихся анодов. Их изготавливают из твердых углесодержащих материалов, составляющих их основу (каменноугольный и нефтяной кокс, антрацит), и связующих веществ, коксующихся при обжиге (каменноугольный пек. Каменноугольная смола). Принципиальные схемы изготовления углеродных материалов различны и зависят от природы сырья. [c.37]

    Кондуктометрия основана на измерении электропроводности растворов, Этот метод широко применяется в пpoизвoд tвe и лабораторной практике, В электрохимической промышленности электропроводность играет большую роль при составлении энергетических и тепловых балансов электролизеров и химических источников тока, так как на ее основе можно сделать рациональный выбор состава раствора электролита, при котором электропроводность раствора достаточно велика и непроизводительные затраты электроэнергии минимальны, Кондуктометрия позволяет автоматизировать контроль производства в ряде отраслей промышленности, имеющ,их дело с растворами электролитов или расплавами, определять содержание солей в различных растворах при испарении воды, что имеет, например, значение для контроля качества воды и других жидких сред. [c.267]

    Нефтяные углероды (нефтяные пеки, коксы и сажи) можно использовать в народном хозяйстве в сыром виде и после предварительного их облагораживания. Некоторые сорта нефтяных пеков после их формования должны с целью получения конечного продукта пройти стадию карбонизации и графитации. При использовании нефтяного кокса в электродной промышленности (производство электродов, конструкционных материалов) он должен пройти стадию прокаливания при 1100—1400 °С, в результате чего упорядочивается его структура, увеличивается тепло- и электропроводность, уменьшается содержание неуглеродиых элементов, регулируются и улучшаются поверхностные и другие свойства. [c.187]

    Прокалка кокса является основным технологическим процессом в электродном производстве и обязательна для всех видов электродной продукции, так как она сильно влияет на эксплуатационные свойства электродов [3]. При нагревании углеродистых материалов до высокой температуры в них происходят сложные физико-химические изменения уменьшается содерлоние летучих веществ, повышается электропроводность кокса, уплотняется и упорядочивается его структура. [c.150]

    Как уже отмечалось, проблема регулирования устойчивости углеводородных дисперсных систем, частным случаем которых являются водобитумные эмульсии, становится решающей при оптимизации и интенсификации процессов их производства и применения. При разработке компонентного состава эмульсий, обладающих заданными наперед специфическими свойствами, и методов повышения эффективности их использования регулирование устойчивости является важнейшим инструментом для решения поставленных задач. Особо следует сразу выделить двоякость подхода к устойчивости - битумные эмульсии должны быть стабильными (аг-регативно и кинетически устойчивыми) при хранении и разрушаться с установленной технологией использования скоростью при контакте с поверхностью. В качестве методов оценки стабильности битумных эмульсий могут быть использованы как традиционные (фактически - визуальные), так и некоторые физико-химические методы. Преимущества первых заключаются в их простоте и доступности. Однако при разработке рецептур эмульсий различного назначения следует использовать более информативные методы. Например, авторами разработана методика оценки стабильности катионных эмульсий по их электропроводности, а также метод определения агрегативной устойчивости битумной пленки, образующейся при распаде эмульсии, в среде растворителя. [c.4]

    Натуральные графиты содержат примесь минералов, не полностью удаленных из них при обогащении руд. Этими минералами являются силикаты и кальцш. Из силикатов наиболее постоянной примесью является слюда. Из примесей, вносимых при обогащении графитовых руд, следует упомянуть масло, металлическое и окисленное железо, попадающее в графит во время размола в мельницах. Эти примеси не оказывают заметного влияния на такие свойства графитовых материалов, как электропроводность и способность пластифицировать электродную массу, если их количество не превышает 10 мас.%. Однако они могут оказать отрицательное воздействие при производстве антифрикционных изделий. [c.8]

    Крупнейшей вехой в промышленном развитии углеграфитовых материалов явилось изобретение Г. Ачесоном (1896 г., США) и Жираром и Стрее (1893 г., Франция) на основе изучения работы печей по производству карбида кремния электротермического способа получения искусственного графита. Это позволило перейти к производству электрографитированных электрощеток, повысить их электропроводность, улучшить смазывающие свойства и резко повысить коэффициент использования электрических машин. [c.11]

    В состав электролита входят основные компоненты — соответствующая соль цинка и кислота. Как уже отмечалось, в настоящее время все заводы применяют сернокислые растворы, хотя первым промышленным электрохимическим методом производства был электролиз раствора пСЬ, и интерес к нему сейчас велик. С повышением концентрации серной кислоты снижается выход потоку цинка, но значительно уменьшается и сопротивление электролита, т. е. напряжение на ванне. Электропроводность М раствора 2п504 при 40 С составляет 6 См/м (0,06 Ом- -см" ). Проводимость М серной кислоты примерно в 10 раз выше. Электролит, содержащий Ш 2п504 и М Н2504, имеет проводимость до 20—30 См/м (0,20— 0,30 Ом" -см" ). Хлористые электролиты обладают более высокой электропроводностью. [c.273]

    Методы, основанные на измерении электрических и магнитных свойств. Так, определяя концентрацию растворов электролитов, измеряют электропроводность. Этот метод называется кондуктометрией. Им также определяют влагу в различных материалах, примеси в сплавах и т, д. Для автоматической регистрации и контроля производства применяют специальные кондуктометрические приборы. Например, солеме-рам г устанавливают содержание солей в котловой воде, в пароперегревателях, [c.17]

    К важнейшим показателям, характеризующим электрические свойства нефти и нефтепродуктов, относятся электропроводность и электровозбудимость. Чистые нефтепродукты являются плохим проводником электрического тока, поэтому их применяют в качестве электроизолирующих материалов в производстве электрокабелей для трансформаторных подстанций. Электропроводность жидких нефтепродуктов зависит от содержания влаги, посторонних примесей и температуры. Поэтому при применении их втранс-форматорах требуется тщательное удаление воды (обезвоживание). [c.27]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Элементарные кремний и германий представляют собой полупроводниковые материалы, которые в настоящее время очень широко применяются для производства транзисторов, термистеров, фотоэлементов и других деталей радиоэлектроники, радио- и электротехники. Электропроводность кристаллических германия и кремния (и других полупроводников) в значительной степени обусловлена ничтожными примесями атомов других элементов, замещающих атомы германия и кремния в их кристаллических решетках. Появление некоторого числа свободных слабосвязанных электронов или электронных вакансий, так называемых дырок, придает кристаллам полупроводниковых материалов свойство избирательной проводимости отрицательной — электронной — или положительной — дырочной. Электропроводность полупроводников определяется не только природой и концентрацией примесных элементов (которая, вообще говоря, обычно бывает очень мала атома примеси на 10 —10 атомов основного элемента), но и физическими [c.104]

    Электрокинетические явления широко используются не только при научных исследованиях, но и в технике. В частности, электрофорез применяют для нанесения тонкого слоя частиц коллоидных размеров на поверхность проводящего материала. Этим способом лолучают весьма однородные покрытия, толщину которых легко регулировать. Электроотложение можно проводить в таких сре-, дах, как спирт, ацетон и других, что исключает выделение газов на электродах даже при большой силе тока и малой электропроводности жидкости. Для нанесения токопроводящих покрытий электрофорез используют при производстве изолированных нагревательных сниралей и активированных катодов для радиоламп, представляющих собой металлическую проволоку, покрытую тонким слоем окисла щелочноземельного металла. [c.218]

    МЕЛАМИН зHaNJ — бесцветные кристаллы, т. пл. 354 С малорастворим в воде, спирте. В большинстве органических растворителей нерастворим. Аминогруппы придают М. основные свойства. В промышленности М. получают из дн-циандиамида или из мочевины. М. применяют, главным образом, в производстве пластмасс, лаков, клеев, отличающихся высокой механической прочностью, малой электропроводностью, водо- и термостойкостью. В текстильной промышленности М. используется для изготовления не-мнущихся и безусадочных тканей в бумажной — для производства водонепроницаемой бумаги в деревообрабатывающей — для склеивания древесины, получения лаковых покрытий. Кроме того, М. применяется для приготовления ионообменных смол, дубильных веществ и др. [c.158]

    Многие практически важные электрохимические процессы (производство алюминия, магния, щелочных металлов, свободных галогенов, рафинирование металлов и др.) осуществляют в расплавах электролитов. Расплавы электролитов используют также в ядерной технике и в топливных элементах. Основными составными частями расплавленных электролитов являются ионы, на что указывает прежде всего высокая электропроводность расплавов. Поэтому расплавленные электролиты называют ионными жидкостями. Ионные жидкости можно разбить на два класса 1) расплавы солей и их смесей 2) расплавы окислов и их смесей. Этот класс ионных жидкостей приготавливают смещением окислов неметаллов (SiOj, [c.89]

    Металлический алюминий. Производство металлического алюминия измеряется миллионами тонн в год и занимает следующее место после производства стали. Получение алюминия основано на электролизе раствора окиси алюминия А12О3 в расплавленном криолите ЗЫаРх хА1Рз. Практически пользуются обычно не природным криолитом, а искусственно полученным продуктом того же состава. Теоретические основы этого процесса были разработаны П. П. Федотьевым и В. П. Ильинским. Выбор двойного расплава криолит — глинозем продиктован необходимостью иметь не слишком высокую температуру плавления, меньшую плотность, чем у алюминия (чтобы расплавленный алюминий погружался на дно ванны), хорошую подвижность расплава, обеспечивающую выделение газов, хорошую электропроводность. [c.76]

    Если под полупроводниками подразумевать вещества, электропроводность которых существенно зависит от воздействия внешних факторов (температура, свет и т. д.), то можно считать, что большинство твердых тел, жидкостей и даже газов обладает свойствами полупроводников. Однако в производстве полупроводниковых приборов используется пока что ограниченное число материалов. Все они являются твердыми телами с электронной электропроводностью и имеют, как правило, кристаллическое строение. Поэтому в дальнейшем под понятием полупроводник будут подразумеваться только твердые тела, обладающие электронной электропроводностью, величина удельной проводимости ко-торых находится в пределах 10 —10  [c.11]

    Этим свойством в некоторой степени обладает и теллур, электропроводность которого резко возрастает также при высоких давлениях (в 100 раз при 12 тыс. ат и становится металиче-ской при 30 тыс. ат). Потребляется он главным образом в производстве свинцовых кабелей добавка теллура (до 0,1%) к свинцу сильно повышает его твердость и эластичность. Такой свинец оказывается также более стойким по отношению к химическим воздействиям. Кроме того, теллур находит применение при изготовлении полупроводников и при вулканизации каучука. Соединения его используются для окраски стекла и фарфора, в фотографии и микробиологии (для окрашивания микробов). [c.355]


Смотреть страницы где упоминается термин Производство электропроводность: [c.169]    [c.171]    [c.149]    [c.156]    [c.98]    [c.115]    [c.125]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.287 ]




ПОИСК







© 2025 chem21.info Реклама на сайте