Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебра II группы

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]


    Элементы побочной подгруппы I группы медь Си, серебро Ag, и золото Аи известны с древнейших времен. Все они встречаются в природе в самородном виде, что свидетельствует о химической инертности свободных металлов, резко усиливающейся от меди к золоту. Не случайно серебро и золото относят к благородным металлам. Все эти элементы в электрохимическом ряду напряжений металлов стоят правее водорода и вытесняются многими металлами из растворов солей  [c.159]

    Все металлы, приведенные в табл. 22.1, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока тысячных долей вол1>та (серебро, таллий, свинец кадмий, олово). Для этой группы металлов (кроме ртути) наибо лее отчетливо проявляются неустойчивость потенциала во времени сложный характер роста катодного осадка и другие особенности свойственные процессу катодного выделения металлов. При про мышленных плотностях тока эти металлы дают грубые осадки Токи обмена для металлов этой группы очень велики. Так, напри мер, ток обмена между металлическо) ртутью и раствором ее ниг рата превышает 10 А-м а между серебром и раствором нитрата серебра достигает 10 А-м  [c.459]

    Сульфирование п-изопропилтолуола (п-цимола) исследовано довольно обстоятельно. В старых работах [110] принималось, что в реакционной смеси содержится лишь одна моносульфокислота, и попытка обнаружить второй изомер, предпринятая Якобсеном [111], была безуспешна. Вскоре после этого [112] из продукта сульфирования я-цимола серной кислотой при 100° была выделена бариевая соль другой сульфокислоты, а впоследствии определен и выход последней [113] в указанных условиях (14,6%). При сплавлении с щелочью [114] из нее образуется тимол, и, следовательно, она представляет собой 1-метил-4-изопропилбензол-3-сульфокис-лоту. Было бы весьма интересно выяснить сравнительную эффективность направляющего влияния обеих алкильных групп в о-изо-пропилтолуоле. Тщательное исследование [115, 116] нроцесса сульфирования п-цимола серной кислотой при различных температурах, а также 15%-ным олеумом показало, что максимальный выход 3-сульфокислоты (15,6%) получается при действии серной кислоты, взятой в тройном количестве от веса углеводорода, при 400°. С олеумом при 0° выход этого изомера уменьшался до 2,5%, а выход бариевой соли — главного продукта реакции — достигал 90%. При температурах выше 100° становится заметным образование дисульфокислот. Добавка сульфатов калия, серебра, кобальта или никеля не изменяет выхода 3-сульфокислоты при сульфировании серной кислотой, но сульфаты меди и ртути снижают его с 15,6% соответственно до 9,4 и 9,7%. При сульфировании 1-моля п-цимола 2,8 молями серной кислоты [117] получены результаты, сходные [c.22]


    Иодид серебра (группа С) [c.99]

    Для придания волокнам стойкости к гниению необходимо вводить в состав полимера ртуть, серебро, группы N и т. п. Например, высокой стойкостью к гниению отличаются полиакрилонитрильные волокна, а также гидратцеллюлозные волокна, к которым привит акрилонитрил. [c.28]

    При растворении карбамидов в кипящей воде и прибавлении аммиачного раствора нитрата серебра группа — СОМНа отделяется и образуется серебряная соль соответствующего пиразола  [c.467]

    Первый патент по каталитической гидрогенизации ацетилена в этилен появился в 1912 г. [68]. В этом патенте сообщалось, что катализатором гидрогенизации является любая смесь, содержащая один или несколько элементов из группы железо, никель, кобальт, медь, серебро, магний, цинк, кадмий, алюминий с одним или несколькими представителями группы платина, осмий, иридий, палладий, родий, рутений. [c.240]

    Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода. [c.53]

    Приводим перечень некоторых ядов (металлы и (или) соедипения), предложенных для деактивации никеля и металлов платиновой группы, с целью сделать их более пригодными для избирательной гидрогенизации углеводородов, особенно ацетиленов серебро, медь, цинк, кадмий, ртуть, алюминий, таллий, олово, свинец, торий, мышьяк, сурьма, висмут, сера, селен, теллур и железо [68, 116]. [c.268]

    Для образования вулканизатов на основе перфторполимеров могут быть также использованы серебряные соли перфторирован-ных кислот. Будучи термически малостабильными, при нагревании они выделяют металлическое серебро и двуокись углерода, с образованием радикалов по атому углерода. Радикалы рекомбинируются, приводя к образованию прочных углерод-углеродных связей. Известны способы введения в перфторированные сополимеры сульфо-, циано- и других функциональных групп. [c.511]

    ЭТОМ отчетливо вырисовывается, что линии, отвечающие однотипным хлоридам, принадлежат к одному семейству и сравнительно мало -различаются по углу наклона. Такова группа линий хлоридов лития, натрия, калия и серебра, к которым можно было бы добавить и другие подобные им хлориды, не показанные на рисунке во избежание его загромождения. Такова группа линий тетрахлоридов углерода, кремния, германия, олова, титана, циркония и гафния. [c.101]

    Помимо простых (одноатомных) ионов в соединениях могут образовываться комплексные (многоатомные) ионы. В состав комплексного иона входят атом металла или неметалла, а также несколько атомов кислорода, хлора, молекулы аммиака (NH3), гидроксидные ионы (ОН ) или другие химические группы. Так, сульфат-ион, SO , состоит из атома серы и четырех окружающих его атомов кислорода, занимающих вершины тетраэдра, в центре которого находится сера общий заряд комплексного иона равен — 2. Нитрат-ион, NO , содержит три атома кислорода, расположенных в вершинах равнобедренного треугольника, в центре которого находится атом азота общий заряд комплексного иона равен — 1. Ион аммония, NH4, имеет четыре атома водорода в вершинах тетраэдра, окружающего атом азота, и его заряд равен + 1. Все эти ионы рассматриваются как единые образования, поскольку они образуют соли точно таким же образом, как и обычные одноатомные ионы, и сохраняют свою индивидуальность во многих химических реакциях. Нитрат серебра, AgNOj, представляет собой соль, содержащую одинаковое число ионов Ag " и NOj. Сульфат аммония-это соль, в которой имеется вдвое больше ионов аммония, NH , чем сульфат-ионов, SOj она описывается химической формулой (NH4)2S04. Другие распространенные комплексные ионы указаны в табл. 1-5. [c.33]

    Применяемые в промышленности катализаторы можно разделить на две основные группы сплошные серебряные катализаторы, активное серебро на носителе. [c.172]

    Катализаторы первой группы представляют собой металлическое серебро, которое обычно гранулируют, и гранулы обрабатывают кислотами для увеличения рабочей поверхности. [c.172]

    Коррозия может быть химической, т. е. развиваться вследствие непосредственного химического воздействия компонентов топлива на детали из наиболее активных металлов, например действие некоторых меркаптанов серы на медь, входящую в состав сплавов, кадмий или серебро, из которых выполнены покрытия некоторых деталей топливной аппаратуры [2—4]. Для применения сернистых топлив характерны также коррозионные износы цилиндро-поршневой группы двигателей и выпускной системы коррозионно-агрессивными продуктами сгорания. Агрессивные окислы серы могут непосредственно воздействовать на металлы выпускной системы при высокой температуре газовая коррозия), но значительно более опасна электрохимическая коррозия кислотами (серной кислотой), образующимися при конденсации паров воды в остывающем или непрогретом двигателе (при [c.179]

    Другие примеры металлов, особенно эффективных в специфических реакциях медь для насыщения групп, соединенных с бензольным кольцом цинк для гидрирования альдегидных групп, сопряженных с олефиновыми связями кобальт для превращения двойных связей и серебро для окисления этилена в окись этилена. Медь как основа катализаторов 52-1 и 51-1 фирмы Ай-Си-Ай обеспечивает соответствующие высокие селективности для реакции окиси углерода с паром с образованием двуокиси углерода и водорода и для гидрирования окиси углерода в метанол. [c.24]


    Серебро Группа соляной кислоты АдСИ [c.646]

    Когда меркаптотиазол адсорбируется на золях порошка иодистого серебра, группа КН сохраняется в молекуле. Поэтому адсорбция должна быть по своей природе физической, и поверхностным комплексом не может быть соль серебра органического соединения. Подпетое серебро, осажденное в присутствии мер-каптотиазола, дает спектр, в котором имеется полоса поглощения при 3460 см , обусловленная валентным колебаппем группы КН адсорбированной молекулы. Высокое значение частоты этой полосы поглощения показывает, что группа КН не испытывает влияния водородной связи. Физическая адсорбция на поверхности иодистого серебра происходит таким образом, что группа КН оказывается удаленной от любых полярных групп поверхности, которые могут взаимодействовать с ней и смещать частоту ее колебаний в сторону более низких значений. [c.405]

    Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно — восстановительных реакций. Железо, например, является классическим ката/шзатором синтеза аммиака. Кобальт, никель, медь и металлы ш атиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси). [c.93]

    Ha протяжении последних 5—7 лет патентная литература отразила стремление улучшить катализаторы риформинга за счет перехода от биметаллических к полиметаллическим каталитическим системам. Большей частью такие системы содержат, наряду с платиной, еще два элемента, из которых один принадлежит к первой группе, а другой —ко второй. Так, если алюмоплатнновый катализатор промотируют рением, то в катализатор вводят еще один из следующих металлов медь, серебро, кадмий, цинк, индий, редкоземельные элементы — лантан, церий, неодим и др. [1551. [c.75]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Из металлов наиболее характерными каталитическими свой-стнами обладают элементы VUl группы периодической системы элементов Д. И. Менделеева. Для ряда процессов катализаторами являются железо (синтез аммиака) кобальт, никель, иридий, платина, палладий (гидрирование и для последних — окисление двуокиси серы). Кроме того, металлы VUl группы являются катализаторами и других процессов разложени.я перекиси водорода, получения гремучего газа, окислеиия аммиака, метанола, метана, окиси углерода, дегидрирования спиртов и т. д. Каталитической активностью обладают и соседние (в периодической системе) элементы медь, серебро, отчасти золото, возможно цинк и кадмий. [c.363]

    Реакцию замещения на нитратную группу в условиях МФК еще не проводили. Однако было показано, что в гомогенных условиях в присутствии агентов, дающих комплекс с катионом соли, нитрат-ион является очень сильным нуклеофилом. В зависимости от типа растворителя ацетобромглюкоза и система нитрат серебра/криптофикс [222] дают смесь продуктов сольволи-за А и нитратных эфиров В. Соотношение этих продуктов изменяется от А В = 98 1 в метаноле до О 100 в диглиме [84]. [c.139]

    Формула НСНО бесцветный газ с резким запахом легко растворим в воде, обычно в продажу поступают 35-40%-ные растворы. Реагирует с белками с образованием трудно растворимых, часто твердых веществ. Обладает дезинфицирующим д ствием. Восстшавлм-вает фелингову жидкость и аммиачные растворы солей серебра вследствие наличия функциональной группы очень реакциовноспо-собен. [c.196]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    Формула СН3СНО подвижная бесцветная жидкость со своеобразным запахом т. кип. 20°С горюч. Легко растворим в воде, этаноле, бензоле. Восстанавливает фелингову жидкость и аммиачные растворы солей серебра вследствие наличия функциональной группы очень реакционноспособен. [c.196]

    Shapiro-Rud реакция Шапиро — Руда на ртуть, медь, серебро, золото и металлы платиновой группы — действие 2% раствора фенилтиомочевины в спирте на испытуемый раствор с одновалентной ртутью образуется серая муть и серо-чёрный осадок, с двухвалентной ртутью — белая муть, с серебром — жёлто-коричневый осадок и жёлтое окрашивание раствора, с медью — белый осадок или помутнение, с золотом, платиной и палладием — жёлтый осадок и муть жёлтого цвета [c.508]

    При решении вопроса о допустимости контакта между металлами можно также рукоиодствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,и1гк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромоиикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро. [c.182]

    По совокупности отличий содержания элементов от средних значений содержания элементов в волосах выявлен характер воздействия на данную груЛпу окруясающей среды. Было обнаружено высокое содержание тяжелых металлов ртути, сурьмы, кадмия, хрома, а также золота, серебра и ряда других элементов. У некоторых студентов отмечено низкое содержание жизненно важных элементов натрия, селена, кобальта, железа, меди и других. Это позволило выявить группу повышенного риска заболеваний. Кроме того, во всех образцах отсутствовал йод. Это подтверждает, что г. Салават эндемичный по йоду район. [c.184]

    Под действием сернистых соединений. находящихся в воздухе, серебряные покрытия тускнеют, покрываются темным налетом сернистого серебра и теряют декоративный вид. Влияние пленки сернистого серебра на электрические характеристики токосъемных деталей зависит от параметров контактной группы (тока, напряжения и контактного давления). На изделиях для высоких частот пленка сернистого серебра обеспечивает стабильность электрических характеристик. Для сохранения стабильных свойств серебряных покрытий применяется дополнительная защита сернистыми со-ед1жениями, палладием и родием. [c.923]

    Полученные экстракцией или адсорбционным разделением концентраты гетероатомных соединений содержат примеси, глав ным образом моно- и бициклических аренов. Очистка от углеводо родов и разделение серусодержащнх соединений на группы осу ществляется вакуумной дистилляцией, адсорбционной хромато графией, ступенчатой реэкстракцией растворами серной кислоты [248], комплексообразованием с солями ртути или серебра Очистку и разделение азотсодержащих оснований проводят с по мощью ионообменной или адсорбционной хроматографии [249, 250]. Кислородные соединения (адсорбционные смолы) очищают от углеводородов и разделяют на классы методами адсорбционной хроматографии, вакуумной дистилляции и этерификацией борной кислотой [248]. Дальнейшие исследования гетероатомных соединений направлены на выявление преобладающего типа соединений в очищенных образцах или идентификацию индивидуальных соединений. [c.142]

    При исследовании этой реакции найдено также, что сернокислое серебро оказывает каталитическое действие. Смешанный эфир метионовой кислоты—метилфенилметионат—синтезирован алки-лированием серебряной соли кислого фенилового эфира иодистым метилом [452]. Метильная группа этого эфира легко гидролизуется. водой. [c.177]

    Металлам приписывается роль стабилизаторов гидроперекиси, поэтому для предупреждения разложения гидроперекиси при температуре выше 50° С иногда рекомендуют внутреннюю поверхность реактора покрывать металлами первой группы периодической системы, нацример медью, серебром, золотом или их сплавами [176]. По данным других патентов, медь вызывает разложение гидроперекиси, а поэтому не рекомендуется применять медные реакторы [153]. Можно отметить, что металлические катализаторы для окисления алмлбепзолов были предложены еще в 1931 г. [124]. [c.261]

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]


Смотреть страницы где упоминается термин Серебра II группы: [c.342]    [c.342]    [c.364]    [c.316]    [c.51]    [c.270]    [c.603]    [c.46]    [c.317]    [c.407]    [c.298]    [c.298]    [c.360]    [c.126]    [c.41]   
Курс аналитической химии. Кн.1 (1968) -- [ c.364 ]

Курс аналитической химии Книга 1 1964 (1964) -- [ c.314 ]

Основы аналитической химии Книга 1 (1961) -- [ c.496 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смеси катионов подгруппы серебра четвертой группы

Взаимодействие катионов подгруппы серебра четвертой аналитической группы с соляной кислотой

Взаимодействие катионов подгруппы серебра четвертой аналитической группы с хлористоводородной кислотой

Группа 1Б. Медь, серебро, золото

Группа соляной кислоты Серебро

Карбонильная группа с аминными комплексами серебра

Карбонильная группа с оксидом серебра

Карбонильная группа серебра

Пятая аналитическая группа катионов (группа серебра)

Реакции катионов Группа I Серебро

Рений , группа. Серебро. Свинец. Ртуть

Серебра группа аналитическая

Серебра нитрат сульфгидрильных групп

Серебра реакции с анионами I групп

Серебра соли, действие на анионы II групп

Схема 9. Анализ смеси катионов подгруппы серебра четвертой группы

Схема анализа хлоридов подгруппы серебра четвертой группы

Функционально-аналитическая группа для серебра

Цианистый натрий, действие на золото платину и металлы платиновой группы серебро сплавы меди

Четвертая аналитическая группа катионов (ионы серебра, ртути, свинца, меди и висмута)

Четвертая аналитическая группа катионов. Медь, серебро, кадмий, ртуть, свинец, висмут

платину и металлы платиновой группы на серебро



© 2024 chem21.info Реклама на сайте