Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы и соединения. Атомные и молекулярные массы

    По методу Канниццаро для определения атомной массы элемента берется ряд летучих соединений этого элемента устанавливается анализом их процентный состав и молекулярная масса. Из пропорции находятся массы данного элемента, приходящиеся на молекулярные массы его соединений, и наименьшая из них принимается за атомную массу. [c.41]


    Оценим таким способом молекулярные массы ряда соединений, в которые входят элементы с интересующими нас атомными массами. Исходя из аналитических данных об относительном весовом составе этих соединений (в процентах) и об их молекулярной массе, оцененной по плотности газов, можно рассчитать массу каждого элемента, приходящуюся на массу одной молекулы. Сравнивая теперь между собой полученные массы одного и того же элемента в целом ряду соединений, следует выяснить- [c.287]

    Выводы Канниццаро были последним звеном в цепи логических рассуждений, которая вела свое начало от Пруста и его закона постоянства состава. Спор был окончен, настало время расчетов. Ученые могли находить точную атомную массу любого элемента, входящего в соединения, плотность паров которых удавалось измерить. Зная атомные массы элементов, можно было вычислять процентный состав новых соединений, что давало возможность однозначно устанавливать их химические формулы. На этой основе было введено понятие моля, которое мы уже сформулировали в гл. 1. Моль определялся как количество вещества в граммах, численно равное его молекулярной массе в шкале Канниццаро (которой мы пользуемся и сегодня разумеется, к нашему времени точность ее стала значительно выше). Отсюда ясно, что моль любого вещества должен содержать одинаковое число молекул. Хотя значение этого числа сначала было неизвестным, ему присвоили название числа Авогадро N в знак запоздалой признательности ученому, внесшему столь большой вклад в развитие химии. [c.289]

    В помещенной ниже таблице указаны плотности паров и весовой состав четырех соединений углерода, водорода и неизвестного элемента X данные относятся к таким же условиям, как и для тех, что приведены в табл. 6-3. Полагая, что атомные массы углерода и водорода известны, определите вероятную атомную массу элемента X и молекулярные формулы соединений А—О. Можно ли, пользуясь периодической таблицей, установить, каким элементом является X  [c.298]

    Имеются три соединения углерода с элементом V. Соединение А содержит 86,4 вес.% V и имеет плотность паров 3,92 г л при. тех же условиях, что и для данных, приведенных в табл. 6-3. Соединение В имеет 82,6 вес.V и плотность 6,16г-л а соединение С-61,4 вес.% V и плотность 2,77 г-л". Какова максимальная возможная атомная масса элемента V Если найденное значение действительно верно, каковы молекулярные формулы соединений А, В и С Какие другие значения атомной массы V возможны еще При помощи периодической таблицы, помещенной на внутренней стороне обложки книги, попытайтесь установить, что за элемент V. Каковы наиболее вероятные значения молекулярных масс соединений А, В и С  [c.298]


    Здесь делается достаточно грубое допущение, что оптическое поведение компонент смеси (раствора) не зависит друг от друга. Кроме того, рефракцию сложных химических соединении можно вычислить, зная рефракцию составляющих элементов. Атомной рефракцией называют произведение атомной массы элемента А на его удельную рефракцию г. Молекулярная рефракция соединения — это произведение его молекулярной массы М на удельную рефракцию г. Если известно число атомов, входящих в молекулу, то молекулярную рефракцию можно представить как сумму атомных рефракций с соответствующими вкладами [c.58]

    Химическая формула выражает качественный и количественный состав вещества и показывает соотношение между атомами этого вещества. Для определения формулы необходимо проанализировать соединение, установить, какие элементы и в каком количестве входят в его состав. Зная атомные массы этих элементов, можно найти соотношение атомов в молекуле и определить формулу. Такую формулу называют простейшей, или эмпирической, а соответствующую ей молекулярную массу — формульной. Она не отражает истинного состава молекулы. [c.51]

    Таким образом, применение закона Авогадро, а также следствий из него для определения атомных масс химических элементов и установления химических формул многих соединений не представляет больших трудностей. Для уточнения формул ряда веществ кроме знания их количественного (мае. доли, %) состава необходимо уметь находить независимым методом их молекулярные массы. [c.30]

    Способом Канниццаро (1858). Первоначально по плотности пара (газа) находили молекулярную массу возможно большего числа газообразных или легколетучих соединений данного элемента. Затем по результатам их анализа вычисляли, сколько единиц массы приходится на долю этого элемента в молекулярной массе каждого из взятых соединений. Наименьшее из полученных чисел приникали за атомную массу, так как меньше одного атома данного элемента в молекуле веш,ества не может содержаться. Из соединений азота для примера возьмем аммиак М = - 7, содержание азота 82,35% тогда 17—100=л-—82,35, л = 14. Аналогичный расчет по результатам анализа можно производить и для других соединений азота. Наименьшим из полученных чисел остается 14. Следовательно, атомная масса азота равна 14. [c.31]

    С установлением атомно-молекулярных представлений понятие валентности приобрело определенный структурно-теоретический смысл. Под валентностью стали понимать способность одного атома данного элемента присоединять к себе то или иное число атомов другого химического элемента. За единицу валентности была принята соответствующая способность атома водорода, поскольку отношение атомной массы водорода к его эквиваленту равно единице. Таким образом валентность химического элемента определяли как способность его атома присоединять то или иное число атомов водорода. Если данный элемент не образовывал химических соединений с водородом, его валентность определялась как способность его атома замещать то или иное число атомов водорода в его соединениях. [c.14]

    В некоторых случаях для определения атомной массы элемента используют явление изоморфизма. Пользуясь тем, что соединения аналогичного формульного состава и одинаковой кристаллической формы могут быть образованы разными элементами, устанавливают молекулярную массу соединения элемента с неизвестной атомной массой, сравнивая ее с молекулярной массой соединения элемента с известной атомной массой. Определив массовое содержание исследуемого элемента в соединении, можно рассчитать его атомную массу. [c.19]

    Метод Канниццаро. Применяется для определения атомных масс элементов, дающих газообразные или легколетучие соединения. Для этого необходимо найти молекулярные массы и элементарный состав как можно большего числа соединений. Наименьшее массовое количество данного- элемента в молекуле какого-то из взятых веществ и будет его атомной массой. Иллюстрацией может служить табл. 4, где дана характеристика содержания углерода в ряде соединений.  [c.23]

    Для определения атомной массы по этому методу должно быть известно процентное содержание элемента и молекулярные массы для возможно большего числа соединений, содержащих данный элемент. Тогда наименьшая масса элемента, приходящаяся на один моль соединения, и принимается за мольную массу атомов данного элемента (табл. 1). [c.32]

    При решении задач на определение химического состава соединений необходимо учитывать, что в молекуле каждого соединения соотношение масс элементов вполне определенное. Исходя нз формулы соединения всегда легко вычислить процентное содержание каждого элемента, входящего в состав соединения. Если, например, относительная молекулярная масса сульфата натрия M Na so = = 142, а относительная атомная масса натрия = 23, то процентное содержание (С ) натрия в сульфате легко определить из уравнения  [c.17]


    Таким образом, процентное содержание элемента в соединении равно отношению суммы атомных масс всех атомов этого элемента, входящих в состав одной молекулы, к молекулярной массе соединения. Такой способ вычисления процентного содержания элемента в соединении иногда позволяет упростить рассуждения при составлении алгебраических уравнений в процессе решения задач. [c.17]

    Формула химического соединения показывает его состав и количественное соотношение между атомами. Формулы, в которых соотношения между количествами атомов выражаются наименьшими целыми числами, называются простейшими формулами. Атомные массы элементов и молекулярные массы химического соединения выражаются в углеродных единицах (у. е.). Углеродной единицей условно названа V12 массы атома изотопа углерода С. [c.9]

    Для того, чтобы установить истинную формулу вещества, показывающую действительное число атомов в молекуле, необходимо, кроме процентного состава и атомных масс элементов, знать еще и молекулярную массу соединения. Для некоторых веществ простейшие и истинные формулы совпадают. [c.33]

    В прошлом атомные массы простых газов (Оз, N2, С12 и др.) определяли как половину молекулярных масс, найденных по их плотности относительно водорода. Для сложных соединений большое распространение в свое время получил метод Канниццаро. По результатам химического анализа для большого числа газообразных или летучих соединений элемента, атомную массу которого определяли, вычисляли его массовую долю. А молекулярную массу рассчитывали через плотность по водороду. Наименьшее из полученных значений массовой доли и есть искомая атомная масса, так как в состав соединений может входить только целое число атомов. При этом в числе исследованных по методу Канниццаро веществ обязательно должно быть соединение, в котором содержится один атом элемента, атомную массу которого определяют. [c.15]

    Для соединений переменного состава, не имеющих молекулярной структуры, вместо молекулярной массы целесообразно ввести понятие формульной массы. Формульная масса равна сумме атомных масс, входящих в данное соединение элементов, умноженных [c.23]

    Грамм-эквивалент окислителя (восстановителя)—масса (г) элемента или соединения, принимающая (отдающая) 6,02-102 электронов. Для вычисл( ния грамм-эквивалента следует атомную (молекулярную, ионную) массу частицы разделить на число электронов, принятых (отданных) одной частицей при реагировании. [c.185]

    С 1961 г. для измерения молекулярных и атомных масс на Международном съезде химиков в Монреале была принята углеродная единица. Абсолютная ее масса равна обратному значению постоянной Авогадро (1 гЛ д). Атомную массу элемента можно вычислить, определив молекулярную массу газообразных (парообразных) соединений этого элемента и процентное содержание его во взятых соединениях разными методами. [c.11]

    Элементы и соединения. Атомные и молекулярные массы [c.79]

    Атомные массы элементов могут быть определены из значений молекуляр-ны.х масс соответствующих элементарных веществ, если известно число атомов в молекуле этих вешеств. Для вычисления атомных масс по методу С. Кан-нинцаро определяют молекулярные массы возможно большего числа соединений данного элемета и аналитическое содержание е(о в Э1их соединениях. Произведение молекулярной массы соединения на содержание элемента в соединении, ныражен]1ое в массовых долях, равно массе данного элемента в граммах, содержащейся в моле этого соединения. Для разных соединений получаются кратные значения, и нгименьн1ее из кратных представляет собой атомную массу элемента. [c.18]

    При определении атомной массы элементов нужно знать молекулярные массы и состав их соединений. Приняв массу молекулы водорода равной 2, Канниццаро создает свою систему молекулярных масс для 33 простых и сложных веществ. Он устанавливает формулы галогенидов щелочных металлов р серебра. МеГ (где Ме — металл, а Г — галоген) галогениды же остальных металлов (Ва, Са, Mg, 2п, 5г, РЬ и др.) в-его системе имеют формулу МеГ,. Канниццаро доказывает одноатомность молекул меди, ртути, цинк а и других металлов. Одновременно он ттоедлагает точное определение понятия атома. [c.86]

    Молекулы высокомолекулярных i единений (ВМС) состоят из атомов, соединенных между собой химическими связями, относительная молекулярная масса которых оиредсляетси суммой относительных атомных масс элементов, входящих в состав молекул, и изменяется от несколь.чпх тысяч до нескольких миллионов, а число атомов, содержащихся в молекуле, выражается цифрой порядка 1000—100 000. Например, длина молекулы этилена составляет 0,133 нм, а высокомолекулярного соединения полиэтилена — 1000—10 ООО нм. [c.270]

    Как только химикам стало ясно, что именно масса-а не объем, плотность или какое-нибудь другое поддающееся измерению свойство - является фундаментальным свойством, сохраняющимся в процессе химических реакций, они стали пытаться установить правильную шкалу атомных масс (атомных весов) для всех элементов. О том, как это делалось, рассказано в гл. 6 результатом этой многолетней работы явилась таблица естественных атомных масс, помещенная на внутренней стороне обложки этой книги. Как мы уже знаем из гл. 1, молекулярные массы молекулярных соединений и формульные массы немолекулярных соединений (например, солей) определяюгся путем суммирования атомных масс всех входящих в их состав атомов. [c.64]

    Стехиометрические законы и атомно-молекулярные представления. Рассмотренные стехиометрические законы положены в основу всевозможных количественных расчетов масс и объемов венюств, принимающих участие в химических реакциях. В связи с этим стехиометрические законы совершенно справедливо относятся к основным законам химии. Стехиометрические законы являются отражением реального существования атомов и молекул, которые, будучи мельчайшими частицами химических элементов п пх соединений, обладают вполне определенной массой. В силу этого стехиометрические законы стали прочным фундаментом, на котором построено современное атомно-молекулярное учение. [c.17]

    Антиокислитель, введенный в топлива, полученные гидрогенизационными процессами, предохраняет их от окисления. Поэтому продукты окисления не образуются и. как следствие, фильтр при нагреве топлива не забивается при этом смолистые продукты на фильтрующем элементе не обнаруживаются. Аналогичный эффект достигается в результате обескисло-)ожнвания топлива, а также при отсутствии его нагрева. Терепад давления на фильтре при определении термической стабильности топлива Т-8, содержащего 0,00001% основного азота, отсутствует и при фильтрации этого топлива через мембранный фильтр с размером пор 0,8—1,0 мкм, хотя на фильтрующем элементе при этом обнаруживаются смолистые соединения. То, что фильтрация не отражается на термической стабильности топлива Т-8, содержащего 0,0001% основного азота, свидетельствует о существенном влиянии азотистых оснований на термическую стабильность реактивных топлив. При относительно высоком содержании азотистых оснований 0,0001% в данном образце топлива, учитывая примерно десятикратное превышение молекулярной массы азотистых оснований по отношению к атомной массе азота, они, окисляясь, образуют такое количество продуктов окисления, которое достаточно, чтобы за короткий срок полностью забить небольшую поверхность фильтрующего элемента (S=l см ) даже при отсутствии в топливе механических примесей с размером частиц< 1 мкм. В этом случае необходимо ввести в топливо достаточное количество ионола. [c.30]

    ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ — химические соединения, молекулярная масса которых может быть равна от нескольких тысяч до нескольких миллионов. Атомы В. с. соединены друг с другом валентными связями. Атомы нли атомные группировки в молекулах В. с. располагаются в виде длинной цепи (линейные В. с., напр,, целлюлоза), либо в виде разветвленной цени (разветвленные В, с,, напр., амнлопектин), либо в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые В. с., напр., феполформальдегидные смолы). В. с., состоящие из большого числа повторяющихся групп одинакового строения, называют полимерами. В. с., молекулы которых содержат несколько типов повторяющихся групп, называют сополимерами. В зависимости от химического состава, В. с. делятся на гете-роцепиые (в основной цепи содержатся атомы различных элементов) и гомоцеп-ные (в цепи — одинаковые атомы). В. с. применяются во всех отраслях народного хозяйства. На основе В. с. изготовляют резины, волокна, пластмассы, пленки, покрытия, различные изделия, посуду, мебель, клен, лаки и др. Все ткани живых организмов состоят из В. с. [c.61]

    ГРАММ-ЭКВИВАЛЕНТ (Г-ЭКВ) -количество граммов химического элемента или соединения, равное эквивалентной массе, т. е. тому количеству, которое соответствует в соединениях или в реакциях 1 г-атому водорода или 0,5 г-атома кислорода. Практически Г.-э. элемента равен его атомной массе, деленной иа валентность в данном соединении. Для кислот и оснований Г.-э. равен молекулярной массе, деленной на осгюв-ность (см. Химический эквивалент). [c.80]

    Для нахождения атомных масс пользуются различными методами. Часть их основана на экспериментальном определении молекулярной массы какого-либо соединения данного элемента. В этом случае атомйая масса равна доле молекулярной массы, приходя- [c.12]

    Если в задаче речь идет о взаимодействии веществ, в большинстве случаев записывают уравнение реакции и расставляют перед формулами коэффициенты. Чаще в условиях вместо количественной характеристики соединений приводят их названия или формулы. Количественными характеристиками могут быть атомные или молекулярные массы элементов и соединений, степени окисления или Еалентности элементов, заряды ионов и др. Такие данные, если они требуются для решения задачи, берут из справочников. Затем устанавливают зависимости данных задачи между собой, а также с искомой величиной и выражают эти зависимости алгебраическими уравнениями. [c.6]

    Делением процентного содержания каждого элемента на его относительную атомную массу получам число молей этого элемента в 100 г соединения 15,90/12,01 = 4,32 13,21/1,008=13,11 34,89/16,00=2,18. Таким образом, соотношение числа молей элементов для исследуемого соединения 4,32 13,11 2,18< откуда делением на наименьшее число (2,18) получаем отношение 1,98 6,01 1, или, округленно, 2 6 1. В таком случае простейшая формула исследуемого соединения — СаНеО. Это эмпирическая формула, т, е. простейшая формула, соответствующая относительному содержанию элементов в молекуле. Брутто-формула соединения может совпадать с полученной формулой, т. е. быть тоже СаНбО, но может быть и ее целым кратным, например С Н Оа, СвН1а05 и т. д., поскольку во всех этих брутто-формулах процентное содержание С, Н и О одинаково. Таким образом, для определения брутто-формулы исследуемого соединения нужно знать еще его относительную молекулярную массу. Если с помощью какого-либо метода определения относительной молекулярной массы мы нашли, что для исследуемого соединения эта масса составляет 46, то искомая брутто-формула совпадает с эмпирической формулой. [c.19]

    Важным этапом, способствовавшим выработке единых взглядов на многие важнейшие вопросы химии, была международная встреча химиков в Карлсруэ в 1860 г. Химики собрались для того, чтобы прийти к единому мнению по главным спорным вопросам химии точное определение понятий атома, молекулы, эквивалента, атомности, основности определение истинного эквивалента тел и их формул установление одинакового обозначения и рациональной номенклатуры. Получила наконец признание гипотеза А. Авогадро, создавшая основу для определения правильных атомных и молекулярных масс, эквивалентов. В результате вступили в свои права старые атомные массь Я. Берцелиуса и был наведен некоторый порядок в написании формул органических соединений, хотя бы в отношении их состава. Благодаря работам Э. Франкланда в области металлоорганических соединений возникло ученее о постоянном валентности элементов, о присуш,ей им способности постоянно удовлетворять свое сродство путем сочетания со строго определенными весовыми количествами других элементов. [c.13]

    Анализ зависимости (1.4) показывает, что в отлнчне от атомной или молекулярной массы химический эквивалент не является постоянной величиной. Если элемент образует несколько соединений, проявляя при этом разную валентность, то эквиваленты будут различными. Например, в оксиде углерода (П) СО стехиометрическая валентность углерода равна 2, а его эквивалент равен 12/2=6 в оксиде углерода 0V) СОа углерод четырехвалентен и его эквивалент равен 12/4=3. Постоянные значения эквивалентов могут быть только у элементов с постоянной валентностью. [c.18]

    Выбор истинного числа делался на основании закона Авогадро, Так как в молекуле любого углеродного соединения не может содержаться меньше одного атома углерода, наименьшая доля этого элемента в молекулярной массе и должна соответствовать его атомной массе. Нужно было, следовательно, определить молекулярные массы различных летучих углеродных соединений, вычислить по их процентному составу в каждом случае долю углерода и выбрать из всех полученных чисел наименьшее. Такие определения давали число 12. Поэтому атомную массу углерода и следовало принять равной двенадцати. В качестве примера привв дены расчетные данные для метана, эфира, спирта и диоксида углерода  [c.22]

    Молекулярную массу сульфида натрия можно вычислить суммированием атомных масс элементов, входяхцих в это соединение  [c.206]

    Ока служит основой для всевозможных стехиометрических расчетов по химическим формулам и урав 1ениям, вычисления молекулярных масс химических соединений. Понятие атомной массы приложимо не только к элементам (эле.мент-ная масса), но и к отдельным изотопам (изотопная масса). [c.12]

    Для соединений переменного состава, не имеющих молекулярной структуры, вместо молекулярной массы целесообразно ввести понятие формульной лшссы. Формульная масса равна сумме атомных масс входящих в данное соединение элементов, умноженных на фактические стехиометрические индексы в химичэ-ской формуле соединения. К примеру, формульная масса оксида титана (- -2) состава Т10о,82 равна 47,9 -Ь 16,00-0,82 = 61,02, Для молекулярных структур формульная масса вещества совпадает с его молекулярной массой, [c.18]


Смотреть страницы где упоминается термин Элементы и соединения. Атомные и молекулярные массы: [c.19]    [c.211]    [c.9]    [c.19]    [c.43]    [c.280]    [c.14]    [c.172]    [c.52]    [c.285]   
Смотреть главы в:

Химия -> Элементы и соединения. Атомные и молекулярные массы




ПОИСК





Смотрите так же термины и статьи:

Атомная масса

Атомная масса элементов

Масса элементов и соединений

Молекулярная масса

Молекулярный вес (молекулярная масса))

Элементы II соединения



© 2025 chem21.info Реклама на сайте