Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Введение в электрохимические методы анализа

    Несмотря на то что основное внимание в настоящем издании уделено физическим методам, в нем значительно удачнее изложены и электрохимические методы. В отличие от изложения этих методов в первом издании здесь О НО начинается кратким введением, где даются теоретические основы электрохимии, позволяющие связать в единую систему все излагаемые электрохимические методы анализа и приводящие, таким образом, как бы к классификации этих методов. Конечно, книга ни в коей мере не может претендовать на сколько-нибудь полный обзор теоретических вопросов электрохимии, фундаментальное изложение которых дается, например, в работах школы советских электрохимиков, возглавляемой академиком А. Н. Фрумкиным. [c.5]


    ВВЕДЕНИЕ В ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА [c.138]

    Во Введении к первому и второму изданиям монографии Амперометрическое (полярометрическое) титрование было подробно рассмотрено происхождение названия метода и описана критика, развернувшаяся в 40—50 годах в связи с тем, что авторы метода— Я. С. Гейровский и его сотрудники — не соглашались с термином амперометрическое титрование, предложенным И. М. Кольтгофом в 1939 г. Чешские химики считали необходимым сохранить за предложенным ими в конце двадцатых годов методом такое название, которое отражало бы неразрывную связь этого метода с его источником — полярографией, например полярометрическое титрование , подобно тому, как титриметрический вариант потенциометрии называют потенциометрическим титрованием. Однако предложенный И. М. Кольтгофом термин амперометрическое , отражающий природу измеряемой величины, т. е. тока, получил всеобщее признание. Автор I и II изданий этой монографии, отдавая должное приоритету и точке зрения чешских химиков, все же пользовался термином амперометрическое титрование. Сейчас этот термин узаконен готовящейся к утверждению ИЮПАК номенклатурой терминов, применяемых в электрохимических методах анализа. [c.8]

    Например, введение в практику усовершенствованных электрохимических методов позволило на несколько порядков повысить чувствительность. Использование более мощных нейтронных потоков дает возможность увеличить чувствительность и селективность радиоактива-ционного анализа повышение разрешающей способности гамма-спектрометров приводит к увеличению чувствительности масс-спектроскопического метода применение низких температур (около —180°С) увеличивает чувствительность люминесцентного определения следов металлов и т. д. [c.22]

    В методах косвенной кулонометрии определяемое вещество не участвует в реакции, протекающей непосредственно на электроде. В результате электрохимической реакции, проходящей на электроде, генерируется промежуточный реагент, который взаимодействует с определяемым веществом в объеме раствора. Косвенная кулонометрия применяется значительно чаще, чем прямая, как способ введения в раствор некоторого количества электричества, необходимого для осуществления титрования. В методах анализа, не связанных с титрованием, этот способ используют редко, поскольку анализируемый раствор должен содержать подходящий промежуточный реагент. Единственным недостатком косвенной кулонометрии по сравнению с прямой является необходимость количественного протекания реакций на обоих этапах косвенного кулонометрического анализа. Образование промежуточного реагента должно происходить с выходом, равным 100% по фарадеевскому току, а реакция генерированного титранта с определяемым веществом должна быть и быстрой, и количественной. Косвенная кулонометрия характеризуется также большей скоростью, поскольку концентрация веще- [c.737]


    В настоящее время электрохимические методы применяются для разделения соединений большинства химических элементов и оказались очень удобными вследствие того, что они не требуют введения в анализируемый раствор посторонних веществ. Используя различные способы электрохимического осаждения с применением платиновых или других электродов и ртутного катода, а также внутреннего электролиза (см. гл. VI, 5), можно разделять катионы алюминия, титана, циркония, ванадия, урана от катионов хрома, железа, кобальта, никеля, цинка, меди, серебра, кадмия, германия, молибдена, олова, висмута и других элементов. Можно также отделять примеси от основных компонентов при анализе цветных металлов, их сплавов и руд. [c.357]

    Для того чтобы удовлетворить этим многочисленным, сложным и зачастую противоречивым требованиям, аналитическая химия использует исключительно богатый спектр методов, основанных на разнообразных по характеру свойствах веществ — химических, оптических, электрохимических, магнитных и др. Широкий диапазон используемых приемов требует от аналитика подготовки и по другим основным разделам химии — неорганической и органической химии, физической химии, а также по физике и математике. Подобная подготовка необходима не только для использования современных методов анализа, но и для развития аналитической химии Как Науки путем введения новых принципов и методов, новых реактивов и пр. [c.9]

    Количественный анализ в ТСХ складывается из нескольких этапов введения пробы в тонкослойную хроматографическую систему, разделения компонентов на тонком слое сорбента, качественной и количественной оценки результатов анализа. Количественное детектирование может быть одностадийным (например, с использованием оптических, ядерно-физических, электрохимических методов) и двухстадийным. В последнем случае анализируемые вещества либо переводят в газовую фазу и затем количественно оценивают образовавшиеся газообразные продукты газовыми детекторами, либо извлекают их из сорбента с помощью растворителей и затем определяют одним из инструментальных методов. При исследовании сложных смесей органических и неорганических веществ перспективно [c.6]

    В заключение необходимо отметить, что методы получения производных для газохроматографического анализа разработаны достаточно подробно и широко используются на практике. Однако эти методы рассчитаны, как правило, на использование в последующем газохроматографическом определении только двух типов детекторов пламенно-ионизационного (ПИД) и электронно-захватного (ЭЗД). Более широкие возможности для селективного определения отдельных классов органических соединений открываются при использовании и предварительных реакций, связанных с введением в молекулу анализируемых соединений атомов серы, фосфора, азота и других элементов, для определения которых разработаны и успешно используются в хроматографической практике селективные детекторы пламенно-фотометри-ческий, термоионный, электрохимические (кулонометрический, полярографический и др.). В данном случае мы можем и должны говорить о развитии аналитической химии меченых нерадиоактивных атомов. Отметим, что в ряде случаев может быть полезным использование для тех же целей и методов введения в молекулы анализируемых соединений групп, содержащих радиоактивные изотопы, например и [154]. Особенно перспективно, по нашему мнению, использование комбинированных реагентов и детекторов для решения задачи идентификации компонентов сложных смесей, что является наиболее важной стороной использования метода предварительных реакций. Вторым перспективным направлением является применение предварительных реакций с целью концентрирования примесей. [c.49]

    Индекс 1 относится к любой заряженной частице, имеющейся в растворе. Введение фонового электролита, ионы которого не увеличивают тока, так как они не могут ни окисляться, ни восстанавливаться, уменьшает число переноса электрохимически активной частицы. Если концентрация фонового электролита высока, например в 100 раз выше, чем концентрация электрохимически активного вещества, то число переноса вещества, окисляющегося или восстанавливающегося, становится равным нулю. Поэтому большинство полярографических определений в интервале 10 —10 Л1 выполняется в присутствии 0,1 М или более высокой концентрации фонового электролита. Однако многие современные методы имеют предел обнаружения ниже 10 М, и для анализа следов можно использовать концентрацию фонового электролита до 10 М, но при условии, что омическое падение напряжения мало. [c.294]

    В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходимым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума. [c.7]


    Пособие представлено двумя книгами. Первая книга состоит из введения к электрохимическим методам анализа и раздела, освещающего потенциометрические методы исследования и анализа. Вторая - отведена изложению методов кулонометрии и Больтамперометрии. Такое распределение материала обусловлено принципиальными особенностями методов потенциометрии, а также тем обстоятельством, что это направление электроаналитической химии после появления книги Кольтгофа и Фурмана "Потенциометрическое титрование" (1935) до настоящего времени не бЬтло представлено отдельным изданием в отечественной литературе. Между тем потекциометрия занимает одно иэ ведущих мест среди электрохимических методов анализа и исследования, особенно после успешного развития такой области, как ионометрия. [c.3]

    Перевод гл. 2, посвященной электрохимическим методам анализа, выполнен канд. хим. наук Н.М. Алпатовой, гл. 1, 3, 4 ("Введение", "Колориметрические методы" и "Спектроскопические методы") перевел М.Я. Каабак, гл. 5, 6 ("Термические методы" и "Радиометрические и рентгеновские методы") канд. хим. наук В.А. Заринский, гл.7-10 ("Газовая хроматография", "Тонкослойная и бумажная хроматография и "Нехроматографические методы разделения") перевела А.Н. Горохова и, наконец, перевод гл. 11, посвященной применению цифровых ЭВМ в аналитической химии, выполнил В.А. Гольдберг. [c.7]

    Известно, что в теоретическую электрохимию большой вклад внесла и вносит советская школа химиков. К сожалению, об этих работах автор не упоминает. Сведения о них можно найти в известных монографиях Майрановский С. Г. Двойной слой и его эффекты в полярографии. — М. Наука, 1971 и Дамас кин Б. Б., Петрий О. А. Введение в электрохимическую кинети-ку/Под ред. А. Н. Фрумкина. — М. Высшая школа, 1975. Для практического применения электрохимических методов можно рекомендовать руководство Гороховская В. И.. Гороховский В. М. Практикум по электрохимическим методам анализа.— М. Выская школа, 1983. [c.7]

    Для аналогичны - целей предлагается маркирование путем введения электрохимически активных фуппировок, которые легко могут быть определены электрохимическими методами 4]. Достаточно хорошо этот способ иллюстрируют примеры, описанные в работе [106]. При этом в качестве метки служат ионы металлов, образующие комплексные соединения с хелатообразующими реагентами, пришитыми к протеинам. В результате взаимодействия с определяемым компонентом ионы металлов высвобождаются и определяются методом инверсионной вольтамперометрии. Одновременно можно определять несколько компонентов, используя в качестве меток разные ионы. При проведении анализа в капиллярных трубках (объем 70 пл) предел обнаружения достигает 4,6 10 ° моль. Градуировочный фафик линеен в пределах четьфех порядков. [c.299]

    Введение, общие задачи, объемный анализ, оптические методы (кроме колориметрии), электрохимические методы (кроме электровесового анализа), радиоактивные методы и методы разделения составил А. П. Мусакин вычисления в весовом анализе — А. И. Храпков-ский электровесовой анализ и колориметрия— С. П. Шайкинд аналитические весы, растворимость осадков и газовый анализ — С, М. Эфрос. [c.6]

    Среди косвенных методов введения атомов фтора в ароматическое кольцо центральное место занимает метод Бальца-Шимана [1-11]. Эта реакция, идущая через тетрафторбораты арил- и гетарилдиазония, освоена промышленностью и постоянно используется в синтетических исследованиях. В заключительной части главы 3 мы также рассматриваем еще один метод введения атомов фтора в ароматические соединения - электрохимическое фторирование. Обоим этим методам уделено большое место в обзорной литературе, и потому в рамках книги невозможно, да и нецелесообразно, дать исчерпывающий обзор. Мы ограничили себя анализом развития способа Бальца-Шимана и электрохимического метода главным образом за последние десятилетия. При этом, в соответствии с основной задачей книги, мы рассматриваем работы, направленные на введение малого числа атомов фтора в ароматические соединения. [c.41]

    Важнейшим вкладом В. А. Каргина в разработку электрохимических методов очистки и анализа веществ является усовершенствование методов электродиализа и создание пятикамерного электродиализатора [И]. Трудность очистки веществ традиционными методами с использованием трехкамерного электродиализатора была связана с рядом обстоятельств и прежде всего с процессом обратной диффузии отдельных примесей. Для достижения наиболее эффективной очистки в таких случаях требова-лась частая смена воды в боковых камерах. Это, в свою очередь, делало практически невозможным концентрирование ценных примесей. Другая трудность заключается в очистке от слабых электролитов, поскольку скорость переноса пропорциональна не концентрации самого электролита, а лишь его диссоциированной части. Для преодоления этих трудностей В. А. Каргиным была предложена новая конструкция электродиализатора, содержащая наряду с тремя основными камерами две дополнительные, включающие диафрагмы и электроды и присоединенные к боковым камерам с помощью узких каналов. К электродам боковых и вспомогательных камер прикладывается разность потенциалов, и в дополнительные камеры переносятся из боковых все удаляемые примеси. Таким образом, введение дополнительных камер позволяет предотвратить процесс обратной диффузии. Кроме того, в дополнительных камерах можно проводить концентрирование ценных примесей. Предложенная конструкция прибора позволяет также резко уменьшить расхэд воды. [c.20]

    Применение электрохимических методов и принципов в органической химии на различных этапах ее развития оказывалось весьма плодотворным, хотя и, может быть, не всегда первостепенным для развития теоретических представлений и практики органической химии. Прежде всего, следует указать на кислотно-основные и окислительно-восстановительные процессы, константы равновесия которых определялись сначала при помощи кондуктометрической, а затем потенциометрической техники. Начиная с 80-х годов Х1Хв., вслед за пионерскими трудами Оствальда и Нернста, широкое применение нашли электрометрические определения констант ионизации (значения рЯа и органических кислот и оснований величины этих констант, сведенные в таблицы, впоследствии использовались для оценки взаимного влияния-атомов в сложных молекулах, для введения понятия об индуктивном и мезомерном эффектах, для создания корреляционного анализа л. с, э. и т. д. [c.135]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    В будущем положение, возможно, частично исправится в связи с тем, что в учебные планы химических факультетов университетов и. некоторых других вузов вводится на 4 курсе практикум по физико-химическим методам анализа. Однако здесь нет установившихся традиций объем практикума невелик. Далее, из-за трудностей технического характера студент при таком практикуме, несомненно, сможет познакомиться лишь с небольшим числом методов, например с электрохимическими или оптическими методами. Введение в учебный план названного спецкурса, общего для всех специализаций, позволяет не рассматривать в общем курсе количественного анализа инструментальную сторону этих методов и практическое выполнение задач. Однако общие основы многих физико-химических методов легче понять в связи с некоторыми разделами общего курса. Так, вопросы спек-трофотометрии в спецкурсе неизбежно потребуют много внимани я к устрой- [c.7]

    Физические методы анализа. Определение состава и структуры са-кгч мых разнообразных веществ можно осуществлять, не прибегая к хйми-ческим или электрохимическим реакциям (см. книга 2, Введение ,, 3). [c.17]

    При выборе методов анализа вод различного состава необходимо принимать во внимание приведенные выше данные об элементном составе природных, питьевых и сточных вод, а также возможности инструментальных аналитических методов (способ введения пробы, пределы обнаружения, погрешность определения). Сравнительная характеристика наиболее часто применяемых современных методов определения элементного состава по их пределам обпаружения представлена на рис. 1.3. Видно, что для определения макроэлементов (Са, Mg, К, Ыа, С1, Ее) с успехом могут быть применены прямая атомно-абсорбционная спектрометрия в пламенном варианте (ПААС), атомно-эмиссионная спектроскопия (АЭС) с различными источниками возбуждения спектров, электрохимический метод (ионо-селективные электроды, кондуктометрия). При определении микроэлементов для большинства методов возможности прямого инструментального анализа на уровне 1 мкг/л ограничены недостаточной чувствительностью. Прямое определение микроэлементов в природных водах возможно при использовании массснектрометрии с индуктивно связанной плазмой (ИСП-МС) [c.10]

    АМПЕРОМЕТРЙЧЕСКОЕ ТИТРОВАНИЕ, метод количеств. анализа, основанный на вольтамперометрии с линейной разверткой потенциала. Конечную точку титрования устанавливают по зависимости диффузионного тока при постоянном потенциале индикаторного электрода от объема V прибавленного титранта. Электрохимически активным в-вом, обусловливающим измеряемый диффузионный ток, м.б. определяемый компонент, титрант, продукт их взаимод. или в-во ( индикатор ), дополнительно введенное в электролитич. ячейку. Выбор значения Ес производят по вольтамперограммам определяемого в-ва (см. рис.) и титранта Титрантом служит р-р реагента-осадителя, окислителя, восстановителя или комплексообразующего в-ва, концентрация к-рого на неск. порядков превьпцает концентрацию определяемого в-ва, с к-рым он взаимодействует. Титрант прибавляют из микробюретки небольшими порциями, благодаря чему разбавлением исследуемого р-ра можно пренебречь. [c.156]

    Ввиду сравнительно слабой электрохимической активности фтор-иона, почти нет прямых методов его определения. В основном описаны косвенные методы, основанные на влиянии фтор-иона на поведение других электрохимических активных ионов, например Fe +, Со . При введении фтор-иона в растворы указанных ионов наблюдается резкое уменьшение окислительно-восстановительного потенциала, что и легло в основу большинства методов [1—4]. Много работ посвящено методам с применением ферро — ферри-электрода в качестве индикатора [5,6]. Данный метод применен к анализу воды [7] считают, что, применяя микроаппаратуру, можно определить 0,05—1 мг фтор- [c.130]

    Электрохимический анализ относится к числу интенсивно развивающихся областей химии. Интерес к этому методу, и в частности к вольтамперометрии и полярографии, обусловлен тем, что они дают возможность сравнительно просто получить широкую информацию о кинетике электродных процессов и о составе исследуемых растворов. Одно из наиболее ценных качеств этих методов — высокая чувствительность. Она достигается либо использованием переменного тока,, когда увеличение, отношения сигнала к помехе обеспечивается соответствующими схемами приборов, либо предварительным концентрированием определяемого компонента на электроде или в его объеме, т. е. вовлечением в зону электродной реакции большего количества вещества. Последнее концентрируется в виде амальгамы — амальгамная полярография с накопле-ниeм — и в виде твердого осадка металла или химического соединения — инверсионная вольтамперометрия твердых фаз (пленочная полярография с накоплением ). Основным источником информации в инверсионной вольтамперометрии служат поляризационные кривые электрохимического превращения твердого вещества, предварительно осажденного на поверхности электрода или введенного в его объем. [c.6]

    Представлялось интересным исследовать тройную систему на основе палладия с одновременным введением металлов как с мень-НИ1М, так и с большим значением параметра решетки, чем у (PdH) . С этой целью была изучена система Pd—Au— u (в сечении [ u] [Au] = l). Исследованные сплавы, которые, как показал рентгенографический анализ, представляли собой неупорядоченные твердые растворы, электрохимически осаждались на платиновую подложку из пирофосфорнокислых ванн при 60"" С и плотности тока 2-10 а см . Химический анализ известной навески сплава выполнялся комплексометрнческим методом. Для опыта обычно осаждалось - 0,005 г сплава, и анодные кривые заряжения снимались в 1 н. H0SO4 при 25°С током 5-10 а см . [c.142]


Библиография для Введение в электрохимические методы анализа: [c.371]   
Смотреть страницы где упоминается термин Введение в электрохимические методы анализа: [c.9]    [c.148]    [c.195]    [c.139]    [c.139]   
Смотреть главы в:

Инструментальные методы химического анализа -> Введение в электрохимические методы анализа




ПОИСК





Смотрите так же термины и статьи:

Методы анализа электрохимические

Методы введения

Методы электрохимические



© 2025 chem21.info Реклама на сайте