Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро и электронная оболочка атома

    БЕТА-РАСПАД ( -распад) — радиоактивное превращение атомного ядра, при котором испускаются р-частицы — электроны (р ) или позитроны (Р+). К Б.-р. относят также захват атомным ядром электронов с ближайшей к ядру электронной оболочки. Массовое число ядра при Б.-р. не изменяется, заряд ядра увеличивается на единицу при испускании электрона и уменьшается на единицу при испускании позитрона или захвате электрона. При этом атом химического элемента превращается в атом другого (соседнего) элемента. [c.44]


    Атом следующего элемента периодической системы — лития — имеет уже три электрона. Литий представляет собой металл, по химическим свойствам очень похожий на натрий. Во всех своих соединениях он всегда одновалентен. Следовательно, из трех электронов атома лития один электрон связан с ядром атома значительно слабее и расположен дальше от ядра, чем два другие электрона. Принципиально важно то обстоятельство, что в атоме лития сохраняется устойчивая конфигурация гелия из двух электронов, образующих первую, т. е. ближайшую к атомному ядру электронную оболочку (электронный слой) атома. [c.76]

    Поглощённый атомом квант рентгеновского излучения вырывает электрон с одной из внутренних электронных оболочек атома. В этом случае электрон покидает атом с небольшой скоростью. Но на свободное место, образовавшееся в одной из внутренних. электронных оболочек атома, перескакивает электрон с какой-нибудь из более удалённых от ядра электронных оболочек. Этот переход сопровождается излучением нового кванта рентгеновского излучения. Энергия этого кванта меньше энергии первичного, и новый квант при поглощении его каким-либо атомом в том же газе способен вырвать электрон лишь с одной из выше расположенных оболочек. Освобождённый при этом электрон обладает запасом кинетической энергии, делающим его способным ионизовать большое число частиц газа. [c.124]

    Нейтроны, проходя через вещество, сталкиваются и взаимодействуют только с ядрами атомов и могут быть поглощены ими, а элемент, таким образом, будет превращен в изотоп. В результате распада ядер этих изотопов могут образоваться новые элементы. Если нейтрон не захватывается ядром, то он может выбить атом из молекулы. Скорость выбитого атома может быть настолько большой, что он потеряет один или несколько электронов. При небольших энергиях нейтронов скорость выбитого атома невелика, и он сохраняет свою электронную оболочку, хотя последняя может придти в возбужденное состояние. [c.260]

    Частицы, из которых построены молекулы. Они не могут быть разложены на более мелкие части с помощью химических реакций. Атомы состоят из ядра и оболочки. Число электронов (отрицательно заряженные частицы) в атомной оболочке атома равно числу протонов (положительно заряженные частицы), содержащихся в ядре. В целом атом электронейтрален. [c.28]

    Остановимся предварительно на некоторых отличиях свойств, присущих положительному водородному иону Н+. Водородный атом обладает той особенностью, отличающей его от всех остальных атомов, что, отдавая свой электрон, он остается в виде ядра без электронов, т. е. в виде частицы, диаметр которой в тысячи раз меньше диаметра остальных атомов. Кроме того, вследствие отсутствия у него электронов ион Н+ не испытывает отталкивания от электронной оболочки другого атома или иона, а, наоборот, притягивается ею. Это позволяет ему ближе подходить к другим атомам и вступать во взаимодействие с их электронами (и даже внедряться в их электронную оболочку). Поэтому в жидкостях водородный ион Н+ большей частью не сохраняется в виде самостоятельной частицы, а связывается с молекулами других веществ. В воде он связывается с молекулами Н2О, образуя ион HoO" , называемый ионом гидроксония-, с молекулой аммиака он связывается, образуя ион NHi — ион аммония и т. д. [c.82]


    Помимо рассмотренных типов связи, особо выделяют металлическую связь, которая проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов. При сближении таких атомов, например в результате конденсации пара, электроны приобретают способность свободно перемеш,аться между ядрами в пространстве именно благодаря относительно высокой концентрации свободных орбиталей. В результате этого в решетке металлов возникают свободные электроны (электронный газ), которые непрерывно перемещаются между положительными ионами, электростатически их притягивают и обеспечивают стабильность решетки металлов. Таков механизм образования металлической связи у непереходных металлов. У переходных металлов механизм ее образования несколько усложняется часть валентных электронов оказывается локализованной, осуществляя направленные ковалентные связи между соседними атомами. Поскольку ковалентная связь более прочная, чем металлическая, у переходных металлов температуры плавления и кипения выше, чем у щелочных и щелочноземельных металлов, а также у переходных металлов с электронными оболочками, близкими к завершению. Это наглядно видно при сопоставлении температур плавления и кипения металлов 6-го периода (табл. 10). [c.37]

    На этом пути, идя снизу вверх, я выхожу и на систематизацию видов атомов (химических элементов), следуя генеалогической родословной материи. Такое переворачивание вектора познания влечет за собой и переворачивание дефиниций некоторых естественнонаучных понятий. Раньше атом определялся как "частица вещества микроскопических размеров (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойства". В новом подходе "атом — это частица вещества, качественная определенность которой характеризуется определенным числом протонов и нейтронов в ядре и определенным числом электронов (равным числу протонов) в электронной оболочке". [c.83]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Вернемся к литию (см. выше). Каждый его атом представлен одним 25-уровнем в валентной зоне и одним — в зоне проводимости (см. рис. 28). Если кристалл состоит из N атомов лития, то в валентной зоне имеется N энергетических уровней, на каждом из которых могло бы находиться по два электрона. Но у лития имеется только один валентный электрон. Следовательно, половина уровней в этой зоне не заняты. Поэтому валентные электроны перемещаются от одного свободного уровня данной зоны к другому, двигаясь между атомными остовами — положительными ядрами атомов, отчасти заэкранированными электронными оболочками 15 литий электропроводен, это металл. Твердые вещества, такие как алмаз, имеют энергетический спектр с полностью занятыми уровнями валентной зоны, отделенной от зоны проводимости широкой запрещенной зоны. Это изоляторы. Но если ширина запре- [c.104]

    Во что обратился бы атом гелия, если бы из его ядра был удален протон, а электронная оболочка осталась бы без изменений  [c.44]

    Молекулярная рефракция — непосредственная мера поляризуемости молекулы, т. е. подвижности зарядов под влиянием электрического поля. Поляризация связана со смещением (деформацией) электронных оболочек атома относительно его положительно заряженного ядра. В результате смещений электрические центры тяжести положительного и отрицательного электричества не совпадают в одной точке, и атом становится полярным. Полярной становится и составленная из таких атомов молекула. Поляризуется, следовательно, и вещество в целом. В связи с тем что поляри- [c.86]

    В дальнейшем понятие химического элемента получило уточнение в соответствии с современным учением о строении атомов. Как известно, атом является сложной системой, состоящей из положительно заряженного ядра и электронной оболочки — совокупности элементарных отрицательно заряженных частиц — электронов. Ядро [c.6]


    Радиоактивный распад с испусканием р- и а-частиц приводит к изменению заряда ядра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р -распада атомный номер увеличивается на единицу, при р+-распаде уменьшается на единицу. В обоих случаях массовое число не изменяется. В результате а-распада атомный номер уменьшается на два, а массовое число—на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а-, р- и у-излучения обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электрон-вольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими электрон-вольтами энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими электрон-вольтами или небольшим числом десятков электрон-вольт. Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому электрическая проводимость газа становится на какой-то очень короткий промежуток времени больше, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку проводимости). Если число распадающихся атомных ядер не превышает нескольких тысяч в секунду, то каждая вспышка может быть зарегистрирована отдельно (проводимость, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно сосчитать число актов радиоактивного распада. Это можно сделать и другим способом, поместив радиоактивное вещество в специальный раствор, содержащий какой-либо сцинтиллятор — вещество, молекулы которого под действием р-частиц начинают испускать свет. Естественно, что каждая р-частица может вызвать свечение не очень большого числа молекул сцинтиллятора, однако современные высокочувствительные фотоумножители позволяют регистрировать такие слабые вспышки, и по числу вспышек света можно определить число распавшихся радиоактивных атомов. [c.27]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Ясно, что такая форма изображения молекулы не подчеркивает тех качественных изменений, которые происходят с электронной оболочкой атома, когда он входит в состав молекулы. Поэтому, строго говоря, под символом Н в изображенных молекулах мы должны понимать не атом водорода, а ядро атома водорода, так как только оно сохраняется неизменным в составе молекулы..  [c.16]

    Атом водорода. В предыдущих параграфах речь шла об атомном ядре. Теперь ознакомимся со строением электронной оболочки атома. [c.26]

    Атом-это наименьшая химическая частица вещества. При разрушении атом распад , ется на более мелкие ( элементарные ) физические частицы, из которых и построены любые атомы, но число пих частиц у разных атомов различное. Физические частицы - это электрон е", протон р и нейтрон. Любой атом - электронейтральная химическая частица его ядро включает некоторое число протонов и нейтронов (заряжено положительно), а на периферии атома- в электронной оболочке находится некоторое число электронов, обязательно равное числу протонов в ядре. Так, разные агомы могут содержать  [c.8]

    Каждый атом состоит из заряженного положительно ядра и движущихся около него электронов. Атом нейтрален, и потому число электронов равно заряду ядра. Заряды ядер лежат в пределах 1—104 без перерывов. Следовательно, число электронов около ядра меняется также в пределах 1 —104. Совокупность всех электронов, окружающих ядро, будем называть электронной оболочкой атома. [c.23]

    Второй период. Следующий в порядке увеличения заряда ядра (2 = 3)— атом лития. Количество электронов в его оболочке 3. Два электрона располагаются в первом квантовом слое, третий же электрон, очевидно, должно поместить на 5-подуровне второго слоя. Конфигурация 15225 . [c.24]

    Третий период. Следующий по заряду ядра (2=11) — атом натрия. Его электронная оболочка состоит из 11 электронов. Из них 2 помещаются в первом квантовом слое, 8 — во втором и один, очевидно, — в третьем. Конфигурация 15 25 р 35 . Начинается новый слой — начинается новый период. [c.25]

    Атом состоит из положительно заряженного ядра и отрицательно заряженных электронов, образующих электронную оболочку. [c.5]

    В таких условиях поляризация связи X—Н приводит к снижению электронной плотности вокруг водородного ядра, которое вступает во взаимодействие со свободной электронной парой, находящейся по соседству. Фактически водородная связь — это диполярное взаимодействие, существенно более слабое, чем обычная ковалентная связь, составляющее не более Vio, а обычно V20 от силы обычной связи С—Н, О—Н или N—Н. Отсутствие подобного эффекта у других атомов, помимо водорода, определяется экранирующим влиянием заполненных внутренних электронных оболочек, которые препятствуют сколь-нибудь ярко выраженному электростатическому взаимодействию с ядрами. Только атом водорода не имеет таких внутренних заполненных электронных слоев. [c.175]

    Атом водорода состоит из одного протона (ядро) и одного электрона. Это простейший атом, не имеющий аналогов в периодической системе химических элементов Д. И. Менделеева. Он способен терять электрон с образованием положительно заряженного катиона Н и в этом отношении сходен со щелочными металлами, которые также проявляют степень окисления + 1. Однако катион Н" " представляет собой голый протон, в то время как ядра катионов щелочных элементов окружены электронными оболочками. Ион водорода имеет очень небольшой радиус — 0,53-10 см, поэтому в ходе химических реакций он легко проникает в электронные облака других атомов, причем связь может быть ковалентной. [c.98]

    Резерфорд дал объяснения рассеяния а-частиц, предложив в 1911 г. ядерную модель строения атома. Согласно этой модели атом состоит из массивного положительно заряженного ядра, очень малого по размерам. В ядре сосредоточена почти вся масса атома. Вокруг ядра на значительном расстоянии от него вращаются электроны, образующие электронную оболочку атома. [c.40]

    Между титаном и цирконием имеется несомненное сходство, но есть и различие. Между цирконием и гафнием наблюдается исключительное химическое родство, объясняемое не только подобием строения электронных оболочек, но и тем, что их атомные и ионные радиусы почти одинаковы (следствие лантаноидного сжатия ). Атом же титана значительно меньше, поэтому валентные электроны у циркония и гафния расположены на больших расстояниях от ядра, более эффективно экранированы от него внутренними электронными оболочками и, следовательно, менее прочно связаны с ядром. Потенциалы иониза- [c.208]

    Атом состоит из ядра и электронной оболочки. [c.64]

    Распад ядра непосредственно обусловлен избытком энергии покоя и его внутренним строением. Скорость распада практически не зависит от внешних условий давления, температуры окружающей среды и агрегатного состояния вещества, поскольку ядро надежно защищено электронной оболочкой от внешних воздействий. Однако в некоторых случаях эта защита не столь совершенна, и тогда значения А, могут несколько изменяться. Например, константа распада нуклида Ве зависит от химической структуры соединения, в которое входит бериллий. Ве может находиться в матрице металлического Ве или может быть и в виде соединения Вер2, в котором атом бериллия отдает два своих электрона -оболочки атому фтора и образует соединение [c.7]

    Atomnim f m остов атома (совокупность ядра и внутренних электронных оболочек)-, атом, лишённый валентных электронов [c.60]

    БЕТА-РАСПАД (Р распад) — радиоактивное превращение атомного ядра, при к-ром испускаются Р-частицы, т. е. электроны (р )или позитроны (Р+) в В.-р. включается также электронный пахват, т. е. захват атомным ядром одного из электронов окру-жаюп(ей ядро электронной оболочки. 1 роме позитрона (или электрона), в каждом акте В.-р. испускаются также нейтрино или, соответственно, антинейтрино (см. Элементарные частицы) при электронном захвате испускается нейтрино. Массовое число ядра при Б.-р. не изменяется. Заряд ядра увеличивается на единицу при испускании электрона и умепь-шается на единицу при испускании позитрона или электронном захвате. При этом атом данного химич. элемента превращается в атом другого (соседнего) элемента. Энергия, выделяющаяся при Б.-р., по-разному распределяется между электроном (позитроном) я антинейтрино (нейтрино). Поэтому энергия вылетающих электронов (нозитронов) может принимать любые значения от О до нек-рой макс. величины [.ран — т. н. граничной. энергии Б.-р. (в большинстве случаев составляющей неск. Мне). Значение граи может служить характеристикой атомного [c.215]

    Ял )о атома некоторого элемента содержит 16 нейтронов, а электронная оболочки этого атома — 15 эле]гг110П0в. Назвать элемент, изотопом ь оторого является данный атом. Привести запись его символа с указанием заряда ядра и массового числа. [c.51]

    Строение трехатомных молекул состава ЭНз. Расположим ядра атомов молекулы состава ЭН2, где Э = О, 8, 8е, Те, так, как показано на рис. 4.24. Каждый атом Э имеет на внешней электронной оболочке одну в- и три р-орбитали, атомы водорода — по одной АО 1. -типа. Относитальное расположение взаимодействующих орбиталей также показано на рис. 4.24. [c.131]

    Возникновение водородной связи можно в первом приближении объяснить действием электростатических сил. При образовании полярной ковалентной связи между атомом водорода и атомом фтора электронное облако, первоначально принадлежавшее атому водорода, сильно смещается к атому фтора. В результате атом фтора приобретает значительный эффективный отрицательный заряд, а ядро атома водорода (протон) с внешней ио отношению к атому фтора стороны почти лишается электронного облака. Обладая ничтожно малыми размерами и, в отличие от других катионов, не имея внз тренних электронных слоев, которые отталкиваются отрицательно заряженными атомами, ион водорода проникает в электронные оболочки других атомов. Поэтому между протоно.м атома водорода и отрицательно заряженным атомом фтора соседней молекулы НГ возникает электростатическое притяжение (см. элст в разделе 4.9.2), образуется водородная связь. [c.156]

    Поле дра атома, удерживающее электроны, притягивает также и сво( ный электрон, если он окажется вблизи атома. Вместе с тем этот электрон испытывает и отталкивание со стороны электронов атома. Теоретический расчет и экспериментальные данные показывакп-, что для многих атомов энергия притяжения свободного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Атомы могут присоединять электрон, образуя устойчивый отрицательный однозарядный ион. Энергия, выделяющаяся при добавлении электрона к нейтральному атому, который в результате переходит в однозарядный отрицательный ион, называется сродством атома к электрону. Эту величину можно трактовать как взятую с тем же знаком энергию отрыва электрона от отрицательного однозарядного иона. Подобно энергии ионизации сродство к электрону обычно выражают в электронвольтах. [c.34]

    Радиоактивный распад с испусканием Р- и а-частиц приводит к изменению заряда яДра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р"-распада атомный номер увеличивается на единицу, при р+-распаде — уменьшается на единицу. В обоих случаях массовое число не изменяется, В результате а-распада атомный номер уменьшается на два, а массовое число — на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а- и Р-Частицы, так же как и 7-излучение, обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электронвольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими эВ энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими эВ или небольшим числом десятков эВ, Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому газ становится на какой-то очень короткий промежуток времени более электропроводным, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку электропроводности). Если число распадающихся атомных ядер не превышает несколько тысяч в секунду, то каждая вспышкй может быть зарегистрирована отдельно (электропроводность, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно считать число актов радиоактивного распада. Это [c.23]

    Атомы элементов 111—IV групп — бор, алюминий, углерод, кремний — образуют с атомами водорода ковалентные, слабо полярные связи, не склонные к диссоциации. Однако с ростом заряда атома в пределах периода, т. е. для элементов V—VJ1 групп, полярность связи элемент — водород вновь увеличивается, но характер распределения зарядов в возникающем диполе иной, чем для элементов, склонных к потере электронов. Атомы неметаллов, у которых для завершения электронной оболочки необходимо несколько электронов, оттягивают (поляризуют) к себе пару электронов связи тем сильнее, чем больше заряд ядра. Поэтому в рядах H4-NH3-H2O-HF или SiHi-PHa-HzS-H I связи атомов водорода, оставаясь ковалентными, приобретают более полярный характер, а атом водорода в диполе связи элемент — водород становится более электроположительным. Если полярные молекулы оказываются в растворе, причем растворитель тоже- полярный, способный вызвать ионизацию (диссоциацию) связей, то может происходить процесс электролитической диссоциации (подробно см. гл. VII). [c.233]

    Некоторое дополнительное обсуждение требуется для определения места водорода в системе. При формальном подходе к структуре его атома водород был бы аналогом лития. Но характер внешней электронной оболочки определяет аналогию элементов не сам по себе, а лишь в свете общей закономерности развития структур. Согласно последней переход в периодах 2 1 сопровождается у аналогичных элементов уменьшением положительного заряда ядра и числа внешних электроноз на восемь единиц (Ме- -Не). Поэтому в действительности нейтральный атом водорода является аналогом атома фтора. При отрицательной валентности водород так же относится к фтору, как Не к Ые, Ь к Ыа и т. д., а при положительной (бу-д чк голым протоном) вообще не может иметь аналогов среди других элементов и [c.235]

    По размерам атомов элемента можно косвенно судить об его окислительно-восстанбвительных свойствах, т. е. о том, является ли он металлом или неметаллом. Чем больше атом, тем ближе расположены к ядру электроны и тем их связь с ядром прочнее. Следовательно, такой элемент предпочтительнее будет проявлять окислительные свойства и являться неметаллом, так как небольшие размеры атомов соответствуют элементам концов периодов,- у которых заполнение орбиталей электронами близко к завершению. Ориентировочно можно считать, что элемент является неметаллом, если орбитальный радиус его атомов не превышает 0,1 нм. Связывая металличность свойств простого вещества со строением электронной оболочки его атомов, необходимо отметить, что у атомов металлов в наружном слое не бывает более четырех электронов (за исключением висмута), а у атомов неметаллов — менее пяти электронов (за исключением водорода, бора, углерода и кремния). [c.204]

    Как известно, атом состоит из положительно заряженного ядра н отрицательно заряженных электронов, образующих электронную оболочку. Главной характеристпкой атома является не атомная масса, как гюлагали ранее, а положительный заряд ядра атома. Он служит отличительным признаком различных видов атомов, что позволяет дать современное определение понятия элемента  [c.12]


Смотреть страницы где упоминается термин Ядро и электронная оболочка атома: [c.187]    [c.138]    [c.177]    [c.138]    [c.22]    [c.335]    [c.29]    [c.53]   
Смотреть главы в:

Справочник Химия изд.2 -> Ядро и электронная оболочка атома




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электрон в атомах

Электронная оболочка

Ядра атомов



© 2025 chem21.info Реклама на сайте