Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклянные катион-селективные электроды

    Стеклянные катион-селективные электроды [c.44]

    Изучению поведения и возможностей применения некоторых стеклянных катион-селективных электродов в неводных растворителях и их смесях с водой посвящен ряд работ [133 — 137] и значительно меньше внимания уделено исследованию поведения этих электродов в апротонных органических растворителях. Между тем растворы солей щелочных металлов в апротонных растворителях представляют особый интерес в связи с их использованием в качестве электролита в источниках тока с высокой энергией. [c.44]


    Иммобилизацию фермента проводят двумя способами [542 — 544]. В одном из них фермент добавляют к гелю акриламида и полученную смесь накладывают на найлоновую ткань. Эту ткань наматывают в один слой на ион-чувствительную стеклянную головку катион-селективного электрода и закрепляют на ней резиновым кольцом. По второму способу получают электрод с жидкой мембраной. Найлоновую ткань погружают в буферный раствор, содержащий определенное количество фермента. Оба электрода (I и П типов) покрывают диализной бумагой и хранят в буферном растворе до момента использования. [c.187]

    Стеклянные ион-селективные электроды. Эти электроды по принципу действия и конструкции подобны рН-электродам, но отличаются от них по составу стеклянной мембраны. Примером такого рода является натриевый электрод. Если обычный рН-элект-род чувствителен к ионам натрия только в щелочных условиях, то натриевый — в широком диапазоне значений pH. Однако стеклянные электроды нечувствительны к анионам и двухвалентным катионам, для их измерения существуют другие типы электродов. [c.227]

    Новые рецептуры в серии литиевых алюмосиликатных стекол обеспечивают хорошо вырабатываемые электроды, обладающие специфичностью к иону натрия по сравнению с ионом калия, равную 1000 I. Сравнение данных по концентрации натрия, полученных с помощью стеклянных электродов и на пламенном фотометре, позволяет заключить, что в первом случае можно определять концентрацию ионов натрия в диапазоне 0,001—0,2 н. с точностью 1—5% [123]. Поскольку большинство катион-чувствительных электродов имеет некоторую остаточную водородную функцию, желательно поддерживать pH в области 7—9. Производятся также электроды с удовлетворительной селективностью по отношению к ионам калия .  [c.286]

    В очень тщательном исследовании Эйзенман развил модельные представления, объясняющие катионную селективность стеклянных электродов [10, 127, 128]. Эйзенман подчеркивает роль электростатической энергии или силы поля мест внутри структуры стекла, которые обеспечивают катионный обмен с фазой раствора. Из этого рассмотрения ясно, что стекла, обладающие водородной селективностью, и стекла, селективные к щелочным катионам, могут рассматриваться как крайние члены непрерывной серии катион-чувствительных стекол. [c.286]

    Особое место в измерении pH растворов занимает стеклянный электрод, широко используемый в настоящее время благодаря ряду его преимуществ (большая селективность, неподверженность отравлению, отсутствие влияния сильных окислителей и восстановителей и пр.). Механизм возникновения потенциала на поверхности стеклянного электрода не является электрохимическим, он в принципе относится к мембранным ионоселективным электродам, которые в последние годы все чаще применяют для определения активности (концентрации) самых различных ионов (катионов и анионов) и привели к возникновению нового раздела прямой потенциометрии — ионометрии. [c.104]


    Здесь следует отметить, что для твердых мембран названные требования находятся в противоречии и удовлетворить их трудно, поэтому большинство мембранных электродов имеют ограниченные области обратимости (низкую селективность). Например, ионы Са + и Mg + связываются поверхностными слоями стекла гораздо прочнее, чем однозарядные Ыа+ и К+, но при этом становятся практически неподвижными, и стеклянных электродов с удовлетворительной функцией двузарядных катионов получить не удается. Лишь для ионов Н+ высокая избирательность их поглощения стеклом не сопровождается потерей подвижности, причиной чего могут служить особые механизмы переноса протонов в твердых телах. В силу отмеченного обстоятельства стеклянные электроды с водородной функ- [c.548]

    Жидкостные ионообменные мембраны можно изготовить и на основе растворов нейтральных молекул, например таких, как циклодекстрины, циклические антибиотики или соединения, образующие хелатные комплексы с определяемыми катионами. Наиболее известным примером указанных электродов является электрод на основе валиномицина, коэффициент селективности которого по отношению к ионам калия почти на два порядка превышает аналогичный коэффициент для лучших стеклянных электродов. [c.178]

    По сравнению с другими электродами, применяемыми для измерения pH растворов (водородный, хингидронный, сурьмяный и т.д.), стеклянный электрод имеет целый ряд преимуществ. Он пригоден для определения pH в области от О до 12. Электрод не чувствителен к окислителям и восстановителям, не отравляется, может работать в средах, содержащих катионы различных металлов. Равновесие между раствором и электродом устанавливается достаточно быстро. Кроме того, стеклянный электрод отличается высокой селективностью, поскольку радиус гидратированного протона существенно отличается от радиуса всех других ионов. Для фазового перехода протону необходима относительно малая энергия активации и, наконец, он может переходить через энергетический барьер по туннельному механизму. [c.188]

    Для потенциометрических измерений применяют мембранные индикаторные электроды. Они обладают высокой чувствительностью и селективностью к катионам и анионам. По материалу мембраны их можно разделить на четыре группы стеклянные электроды электроды с жидкими мембранами электроды с твердыми или осадочными мембранами электроды с газочувствительными мембранами. [c.106]

    Большие преимущества стеклянного электрода как средства удобного и быстрого определения протонной активности послужили стимулом для разработки других мембранных -электродов, проявляющих селективную чувствительность к присутствующим в среде катионам или анионам. Подобные электроды называются ионоселективными. [c.342]

    Мембранные электроды. Если между двумя растворами, содержащими разные катионы или различные концентрации одного катиона, поместить мембраны, проницаемые для катионов и непроницаемые для анионов, то в таких мембранах возникает потенциал. Были сделаны попытки использовать селективные мембранные электроды для измерения активностей ионов металлов, особенно металлов главных подгрупп 1-й и 2-й групп, металлические или амальгамные электроды которых разлагаются водой и нет возможности найти подходящую окислительно-восстановительную систему. Большое число таких электродов рассматривается в работах [85, 204]. Первые исследования проводились с коллодием или гидратированными цеолитами, но позднее начали изготовлять мембраны из синтетических ионообменных смол, содержащих карбоновые, фосфоно-вые [158] или сульфогруппы, либо из стеарата бария [86], окиси графита [58] и неорганических осадков в парафиновом воске [80]. Ионы щелочных металлов, также как и протоны, были изучены с помощью стеклянного мембранного электрода. Потенциал мембраны обычно измеряется косвенным путем с помощью элементов типа [c.165]

    Стеклянные мембраны, помещенные в кислоту, отличаются от мембран, изготовленных из глины, коллодия или смолы (стр. 165), тем, что они очень селективны к водородным ионам и потенциал мембраны может быть использован для измерения активности водородных ионов даже в присутствии других катионов. Поэтому стеклянные электроды могут применяться для определения концентрации Н водородных ионов в растворах с постоянной ионной силой, содержащих избыток, например, ионов натрия. Более того, комплексообразование между В и А часто изучается с помощью системы В, А, И (гл. 4, разд. 1). Применяя стеклянный электрод, можно определить концентрацию водородных ионов достаточно точно при условии, что В— ион одновалентного или двухвалентного металла, однако, по-видимому, присутствие высокозаряженных катионов, таких, как 1п + и приводит к искажению показаний [34]. [c.169]

    Эйзенман вывел также выражение для коэффициента селективности стеклянного электрода для различных катионов. Для бинарной смеси ионов водорода Н и катиона А оно записывается как [c.12]


    Селективные к аминокислота.м электроды разрабатывались на основе стеклянных обратимых по катионам электродов, например электрода, чувствительного к однозарядным катионам (Бекман, тип 39137). Получают эти электроды следующим образом наносят тонкий слой фермента (оксидазы ь-аминокислоты, г-ААО, для г-аминокислотного электрода оксидазы о-аминокислоты, о-ААО, для о-аминокислотного электрода аспарагиназы для аспарагинового электрода глутаминазы для глутаминового электрода и т. д.) на электрод, чувствительный к однозарядным катионам. [c.186]

    Стеклянные электроды, обладающие высокой избирательностью (селективностью) по отношению к каким-либо ионам, называют электродами с электродной функцией по данному виду ионов [19]. Изменяя состав стекла, из которого изготовляется нижняя часть электрода, получают ионоселективные солевые мембранные индикаторные электроды, избирательно реагирующие на изменение активности катионов (К+, Ка+, Ад+, МЩ и др.). [c.362]

    Мембраны из ионитов первыми испытывались для мембранных электродов [1 ]. Как правило, мембраны из катионита или анионита обратимы к катионам или анионам соответственно, но обратимость их к одному из многих присутствующих в растворе ионов одного и того же знака представляет исключительное свойство, отмеченное лишь в небольшом числе случаев, примером которых может служить стеклянный электрод, селективный к ионам водорода [2, 3] (см. гл. IX). Поэтому прилагались многие усилия для создания мембранных систем, специфически обратимых к одному из ионов в присутствии других. В этой главе описано получение электродов с твердыми мембранами, селективных к катионам. [c.174]

    Стеклянные электроды, селективность которых по отношению к тем или иным ионам определяется химическим составом стекла. К стеклянным электродам относятся водородные электроды и электроды, селективные по отношению к однозарядным катионам. [c.43]

    Мак-Клюр и Редди [136] исследовали стеклянные катион-обменные электроды в пропиленкарбонате (ПК), ацетонитриле и диметилформ-амиде (ДМФ). Были изучены электродная функция, время отклика, селективность и срок службы в 10 10 М растворах ионов Ы, N3 и на фоне 10 М (С4Н9)4НСЮ4. Электродные функции представлены на рис. 5.1 (основные катион-селективные электроды фирмы Бекман № 39047) как видно из рисунка, для всех исследованных растворителей электродная функция линейна в диапазоне концентраций 10 —10" М, [c.44]

    Краткая историческая справка. Первым представителем мембранных электродов следует считать стеклянный электрод, открытый и изученный как Н -селективный электрод в начале нашего столетия. В дальнейшем была исследована обратимость различных стеклянных мембран к другим катионам ( N L, К Са и др.). Так, в 1934 г. предложен КО селективный стеклянный электрод в 1935-193 7 гг. исследования в этом направлении ведут в США И. Кольтгоф, а в Советском Союзе Б.П. Никольский, В.А. Каргин и др. В 1961 г. появляется первое упоминание об осадочных мембранных электродах (Венгрия, Е. Пунгор). Промышленное изготовление (в том числе Г -селектиБНого электрода) начинается с 1966 г. Первые работы по жидким мембранам относятся к 1967-1970 гг. В настоящее время как в СССР, так и эа рубежом в различных научно-исследовательских центрах ведутся систематические работы по изучению электродных свойств разнообразных мембран. [c.39]

    Попытки изготовить калий-селективный стеклянный электрод до настоящего времени оказались безуспешными. Все сорта стекол, которые применялись для этих целей, оказались обратимыми и к другим однозарядным ионам. Такие электроды называют катион-чувствительньши. Чтобы перевести электрод из одной формы в другую, его обычно вымачивают длительное время в растворе, содержащем соответствующий ион металла, время от времени заменяя раствор. У катион-чувствительных стеклянных электродов коэффициенты селективности к различным ионам убывают в ряду НГ Ж" > Na" > NH4", Li", Rb", s" > a " и т.д. В отсутствие ионов натрия и калия (что бывает крайне редко) катион-чувствительные электроды достаточно хорошо реагируют на ионы NHt", Li", Tl", Си", Rb", s", Ag" и могут служить датчиками при потенциометрическом титровании этих ионов. Как и при применении натрий-чувствительных электродов, мешающее действие ионов Н" в этом случае устраняют, поддерживая концентрацию последних на низком уровне. [c.189]

    Катионоселективный стеклянный электрод изготовлен аналогично водородоселективному стеклянному электроду. Электроды, чувствительные к Ыа+, К , NH4+, Ag+, получают, изменяя состав стекла. В присутствии других катионов селективность таких электродов, однако, невысока. [c.56]

    Изменяя состав стекла, можно целенаправленно менять его чувствительность к различным одновалентным катионам. Селективность катионов как функцию состава стекла изучал Эйзенман [19]. За последние годы Пранг и Стил [20] исследовали коэффициенты селективности, влияние pH и световую чувствительность ряда стеклянных электродов, поставляемых промышленностью. [c.268]

    Пенициллин-селективный электрод можно использовать для определения концентрации пенициллина в диапазоне 10 -5-10 моль/л. pH пробы оказывает решающее влияние на работу электрода, так как концентрация ионов водорода влияет на растворимость и стабильность пенициллина, а также на активность фермента. При pH < 5 пенициллин малорастворим, а при pH > 8 нестабилен. Хоу и Пул [586] нашли, что оптимальная активность пенициллиназы наблюдается в диапазоне pH 5,8—6,8 для всех видов пенициллина, представленных в табл. 16.1. Наибольшая чувствительность и скорость установления потенциала электрода имеет место при pH 6 — 7, и, как обычно, для проведения анализа можно рекомендовать среднее значение pH 6,4. Электрод работает по крайней мере в течение двух недель, время отклика составляет от 15 до 30 с. По самой своей природе электрод чувствителен не только к ионам водорода, но и ко многим однозарядным катионам. Для того чтобы исключить влияние посторонних ионов, Куллен и др. [585] сконструировали новый пенициллин-селективный ферментный электрод, который изготовлен таким образом, что иммобилизация фермента происходит в результате адсорбции пенициллиназы на пористом стеклянном диске, который фиксируется на плоской поверхности стеклянного рН-электрода. Такой электрод чувствителен только к пенициллину и не меняет свой потенциал в присутствии однозарядных катионов. Кроме того, электрод проще [c.198]

    Гюильбо и др. [663] исследовали катион-селективные стеклянные электроды Бекман 39047 и 39137 для определения уреазы, глутаминазы, аспарагиназы и оксидаз о- и L-аминокислот. К известному объему трис-буфера (pH 7,0) добавляют определенный объем анализируемого раствора фермента. Индикаторный электрод и электрод сравнения (нас.к.э.) погружают в раствор, после чего потенциал записывается автоматически. Потенциал, соответствующий наименьшей концентрации NH4, можно установить по калибровочной кривой. Большой положительный потенциал указывает на присутствие катионов щелочных металлов, которые воздействуют на электродную функцию. В этом случае в пробу добавляют небольшое количество катионообменной смолы (дауэкс 50 или подобной ей), перемешивают 5 мин, фильтруют и к профильтрованному раствору добавляют определенный объем соответствующего субстрата (мочевина, глутамин, аспарагин, о-пролин или г-тирозин). Потенциал меняется как функция концентрации образовавшихся ионов аммония. Количество имеющегося фермента можно рассчитать из кривой зависимости Д /мин от концентрации фермента. [c.212]

    Измерения импеданса проводили также Бранд и Речниц на электродах с жидкими [54] и стеклянными [55] мембранами. Их проверка свойств импеданса стеклянного электрода показала, что при высоких частотах 2р каждого электрода стремится к предельному значению (около 10 КОм), а — к нулю. Диаграммы типа Коуля—Коуля для электродов, обратимых к одновалентным катионам, как уже говорилось, представляли собой асимметричный полукруг с центром ниже реальной оси и напоминали кривые, полученные ранее для электродов с жидкими мембранами [54]. Те же зависимости обнаружены для №- и Ыа -селективных электродов [55]. Кроме того, при низких частотах наблюдался второй асимметричный полукруг, особенно явственный для рН-электро-дов. Это, как уже описано, указывает на присутствие гидролизованной поверхностной пленки (гелевого слоя) на стекле. Наличие этой пленки не характерно для стеклянных мембран электродов, обратимых к одновалентным катионам. Если гелевый слой отсутствует, экстраполяция участка полукруга к высоким частотам до пересечения с реальной осью дает значения / р.р — последовательно включенного сопротивления, обусловленного электродом сравнения и раствором. Если 2 есть импеданс неизменной толщи стекла (в отсутствие гелевого слоя), тогда [c.285]

    Стеклянный электрод относится к большой группе ионселек-тивных электродов, т. е. электродов, чувствительных к определенному иону. В кислых и нейтральных средах стеклянный электрод обладает высокой селективностью к ионам водорода, а в щелочных становится селективным к катионам щелочного металла. За счет подбора состава стекла его катионную функцию можно увеличить и создать набор катиончувствительных стеклянных электродов (Б. П. Никольский, М. М.-Шульц, Дж. Эйзенман), при помощи которых определяют активность ионов На+, К+, Ag+, NH4, Т1+, Ы+, Сз+ и даже органических катионов. [c.137]

    Стеклянный электрод относится к большой группе ионселективных электродов, т. е. электродов, чувствительных к определенному иону. В кислой и нейтральной средах стеклянный электрод обладает высокой селективностью к ионам водорода, а в щелочной становится селективным к катионам щелочного металла. Введение в состав стекла оксидов бария, церия, лантана и замена натрия на литий значительно расширяют диапазон Н+-функции стеклянного электрода и позволяют создать стеклянные электроды, работающие в диапазоне pH от 2 до 14 при температуре, не превышающей 100—150°С. С другой стороны, введение в состав стекла оксидов алюминия и бора в сильной степени увеличивает его катионную функцию. Таким путем удалось создать набор катиончувст-156 [c.156]

    Стеклянный электрод. По принципу работы стеклянный электрод относится к так называемым ион-селективным (мембранным) электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов, т. е. в электродных реакциях электроны участия не принимают. Ионсе-лективные электроды могут быть обратимы как по катиону, так и по аниону в зависимости от свойств используемой мембраны. [c.253]

    В П. примен. след, индикаторные электроды в рН-мет-рии и кислотно-основном титровании — стеклянные, хингид-ронные, сурьмяные и др. в редоксиметрии и редоксимет-рич. титровании — платиновые при прямом определении а катионов и анионов, а также в осадит, и комплексомет-рич. титровании — ионселективные электроды и электро ды первого и второго рода (напр., серебряный и хлоросеребряный, см. Электроды). Новое направление П.— ионо-метрия, использующая ионселективные электроды, обратимые по отношению к соответствующим ионам. Достоинства П. т.— низкие границы определяемых концентраций, объективность и точность установления к. т. т., селективность, возможность титрования в окраш. и мутных средах, последоват. титрование неск. компонентов, простота автоматизации. П. использ. для изучения кинетики и определения констант устойчивости комплексных соед., констант диссоциации слабых к-т и оснований, а также произведения р-римости малорастворимых электролитов. Важное примен. П.— определение pH прир. вод, почвенных вытяжек, биол. систем и др. п. К. Агасян. [c.475]

    На рис. 11-5 показано влияние оксида алюминия на сигнал стеклянного мембранного электрода. Если стеклянный электрод идеально-отвечает на присутствие ионов водорода в обычном диапазоне pH, то потенциал электрода будет линейно изменяться с измерением pH (диагональная сплошная линия на рис. 11-5). Электроды, изготовленные из обычного известково-натриевого стекла, проявляют ожидаемый линейный отклик на ион водорода почти вплоть до рН=10, выше возникают отклонения или щелочная погрешность вследствие мешающего влияния катионов щелочных элементов ион натрия является самой больщой помехой, за которым следует ион лития и калия. Однако стеклянный мембранный электрод, состоящий из 1,7% АЬОз, 10,9% ЫааО и 87,4% (моль.) ЗЮг, ведет себя совершенно по-иному в очень сильнокислой среде наблюдается нормальный отклик на pH, но при повышении pH электрод становится заметно чувствительным к 0,1 Л1 растворам иона натрия или калия (при рН>2) и иона лития (при рН>4). При равных концентрациях иона водорода и катиона каждого щелочного металла стеклянный электрод, содержащий АЬОз, более чувствителен к иону водорода, но при рН>1 селективность такого электрода к иону щелочного металла повышается. Между 5 и 6 единицами pH пунктирные линии на нижней части рис. 11-5 становятся горизонтальными, указывая, что натриевоалюмосиликатное стекло не реагирует более на присутствие протонов, а только на присутствие ионов щелочных металлов. Хотя свойства натриевоалюмосиликатного стекла (см. рис. 11-5) не являются оптимальными, ионообменные центры во внеш  [c.380]

    В обычном виде стекло не содержит водородных ионов. Однако при вымачивании стеклянного электрода в водных растворах, поверхностный слой его на некоторую глубину подвергается изменениям — в него проникают молекулы воды, происходят процессы гидратации и некоторого набухания. Часть ионов натрия в поверхностном слое вымывается и заменяется ионами водорода из раствора. Между водородны.ми ионами в поверхностном слое и в растворе устанавливается равновесие, в результате которого возникает равновесный межфазный потенциал. Основная особенность этого поверхностного слоя — исключительно высокая селективность к ионам водорода (по сравнению с ионами натрия или другими катионами). Для разных видов стекла коэффициент селективности других ионов составляет 0-з—В связи с этим обе стороны мембраны действуют как хорошие водородные электроды. В отличие от других видов г оиоселсктивкых. иембран, в средней части стеклянной [c.398]

    Более обширное исследование катионных стеклянных электродов в пропиленкарбонате, ацетонитриле и ДМФ было выполнено Мак-Клюром и Редди [292]. Нернстовские наклоны 53—59 мВ (рис. 3) были получены в интервале концентраций от до 10 2 М (где поправки на коэффициенты активности и диффузионные потенциалы малы) для ионов К и N3" (фоновый электролит 0,1 М Ви4НС104). Отрицательные результаты получены для ионов и Ыа+ в ДМФ по-видимому, эти ионы реагируют с остаточными аминами. До проведения измерений электроды пропитывались в течение 24 ч в растворах соответствующих (исследуемых) солей, причем в каждом растворителе использовались различные стеклянные электроды. По отношению к катионам щелочных металлов наблюдалась очень плохая селективность, что согласуется с результатами наблюдений Бодена [43]. Потенциал электрода достигает равновесного значения (с точностью до 1 мВ) в течение 5—10 с, что гораздо меньше соответствующего времени для чувствительных к ионам водорода стеклянных электродов в апротонных растворителях. При хранении стеклянного электрода в течение 6 мес в пропиленкарбонате, содержащем 10 М ионов не было обнару- [c.220]

    На селективность ионного обмена влияют многие факторы, и количественная теория может рассматривать только простейшие случаи, примером чего может служить обмен катионов щелочных металлов. Убедительное объяснение селективности катионообменников для щелочных металлов дано Айзенманом [19]. Он начал с исследования реакций стеклянных электродов для различных катионов щелочных металлов. Стекла действуют как ионообменники, а стеклянные электроды функционируют как ионообменные мембраны. Это было показано многими исследователями, и, в частности, в последней работе Доремуса [20] были измерены коэффициенты диффузии ионов в стеклах. Электрические потенциалы определить легче, чем ионообменное распределение, но потенциалы мембран зависят от двух факторов — ионообменной селективности и отношения коэффициентов диффузии или подвижностей. При измерении потенциалов стеклянных электродов в растворах, содержащих два иона, натрий и калий (в дополнение к иону водорода, который всегда присутствует в водных растворах), нашли, что фактор электрохимической селективности зависит в основном от ионообменной селективности.. Отношение подвижностей составляет только десятую часть ионообменной селективности. Айзенман исследовал много стекол различного химического состава, а также ряд биологических мембран. Он сделал вывод, что если измерена селективность для [c.64]

    Никольский и Толмачева [11] при исследовании стеклянных электродов распространили на них представления об ионном обмене. Солнер и Шин [12, 13] первыми применили жидкие мембраны, содержашие растворенный ионообменник. Эти мембраны, как выяснилось, проявляют селективные свойства к группе катионов, а не к какому-то конкретному катиону. [c.7]

    Ряд исследований показал, что присутствие в стекле АЬОз или ВгОз приводит к желаемому эффекту. Эйзенман и сотр. [7] провели систематическое изучение стекол, содержащих NagO, АЬОз и SIO2 в различных соотношениях. Они показали, что действительно можно изготовить мембраны для селективного определения некоторых катионов в присутствии других. В настоящее время выпускаются стеклянные электроды для определения ионов калия и натрия. [c.432]

    Щелочная ошибка стеклянных электродов обусловлена чувствительностью их потенциалов по отношению к ионам щелочных металлов. Этот факт заставил Лендьеля и Блюм [19] исследовать стекла, содержащие главным образом алюмо- и боросиликаты, которые проявляли избирательность к ионам щелочных металлов в широких пределах pH. Эйзенман с сотр. [20] провели тщательное исследование электродных свойств натриевоалюмосиликатных стекол в широком интервале составов . Они впервые показали, что селективность к различным катионам систематически меняется с составом стекла. Ниже изложены рекомендации Эйзенмана, [c.269]

    Эйзенман [22] описал изменения времени установления потенциала и селективности катионоселективных стеклянных электродов в неводных и смешанных с водой растворителях, по сравнению с водными. Показано, что поведение электродов в метаноле такое же, как в воде, с той разницей, что селективность их к катионам по сравнению с № возрастает. [c.295]

    Разработаны ионселективные электроды не только к и ну во дорода, но и J ряду других ионов Na" ", К" , Са +, NH , Ag l , F , NO3, IO4 и др. По виду применяемых в них мембраь их можно разделить на три типа твердые, стеклянные, жидкие Изменяя состав стекла, получают набор электродов для опреде ления концентрации однозарядных катионов (Li" ", К" , Na" " Rb ", s" , NH NR t Ag" , Те ). В электродах с жидкими мем бранами используют жидкие органические ионообменники, плохо смешивающиеся с водой. Жидкий органический ионообменник задерживается в порах мембраны. Если такую мембрану, пропитанную жидким ионообменником, поместить между двумя растворами с различной концентрацией ионов, которые могут связываться с ионитом, то на каждой поверхности раздела фаз раствор—мембрана возникает потенциал, который зависит от активности (концентрации) одного и того же иона в растворах на каждой стороне от мембраны. Если активность ионов на одной стороне мембраны остается постоянной, то изменения в мембранном потенциале отражают изменение активности ионов во втором растворе. Жидкий ионит состоит из растворителя, несмешиваю-щегося с водой и содержащего высокомолекулярные органические растворенные вещества с кислыми или основными функциональными группами, которые сильно и довольно селективно взаимодействуют с определяемым ионом. [c.264]


Смотреть страницы где упоминается термин Стеклянные катион-селективные электроды: [c.111]    [c.377]    [c.193]    [c.157]    [c.189]    [c.475]    [c.129]    [c.45]   
Смотреть главы в:

Применение ион селективных мембранных электродов в органическом анализе -> Стеклянные катион-селективные электроды




ПОИСК





Смотрите так же термины и статьи:

Ион-селективные электроды

Ион-селективные электроды стеклянные электроды

Ион-селективные электроды электроды

Катиониты селективность

Катионная селективность

Электрод стеклянный



© 2025 chem21.info Реклама на сайте