Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уголь свойства

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]


    Пусть на кристалл падает пучок монохроматических рентгеновских лучей, образуя угол О с одним из семейств атомных плоскостей (рис, 63, а). Луч 5 , попадая на атомную плоскость Р , отразится от нее в направлении 5. Второй луч 8о, пройдя первую атомную плоскость (на основании свойства рентгеновских лучей проникать через вещество), отразится от плоскости Р, и также выйдет в направлении 5 и т. п. Отраженные параллельными атомными плоскостями лучи будут интерферировать между собой и в зависимости от их фазового соот- [c.112]

    Многочисленные опыты показывают, что в среде жидкого кислорода и воздуха горение ряда органических веществ протекает более интенсивно. Необходимо при этом, чтобы реакция началась до соприкосновения с жидким кислородом или воздухом. Например, уголь дуговой лампы, один из концов которого нагрет до красна, при погружении в прозрачный сосуд Дьюара с жидким кислородом продолжает гореть очень спокойно с интенсивным выделением света и теила. Бурная реакция происходит при погружении в сосуд с жидким кислородом раскаленных проволок из стали и магния. В ряде случаев реакция горения сопровождается взрывом. Например, прп погружении в жидкий воздух горящего кусочка фосфора происходит сильный взрыв. Смеси жидкого кислорода со спиртом и керосином обладают очень сильными взрывчатыми свойствами при наличии достаточного импульса. Эти свойства жидких воздуха и кислорода позволили использовать их для получения взрывчатых веществ. В качестве взрывчатого вещества вначале применяли древесные опилки, пропитанные жидким воздухом, обогащенным кислородом. В настоящее время взрывчатые вещества, представляющие смесь тонко измельченного горючего вещества с жидким кислородом, получили название оксиликвитов [22] и их широко применяют в промышленности. [c.44]

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Нередко состояния, относительно мало устойчивые в термодинамическом смысле, практически длительно сохраняются во времени, что дает возможность применять вещества в таких состояниях. Так, окислы железа являются более устойчивыми в обычных условиях в присутствии кислорода, чем металлическое железо. Однако это не мешает широко применять металлическое железо в атмосферных условиях, хотя при этом и происходит некоторая потеря железа (ржавление), а в соответствующих условиях железо приобретает пирофорные свойства (см. примечание к стр. 358). Также и углекислый гае в обычных условиях является более устойчивым, чем уголь или графит. Однако это не препятствует их- применению в присутствии кислорода, хотя при определенных условиях может произойти самовозгорание угля. [c.227]

    Рассмотрим некоторые экспериментальные данные о свойствах агрегатов, состоящих из небольшого числа молекул воды. Наиболее изучены, разумеется, димеры. Для них мы располагаем не только термодинамическими, но и структурными данными. Так, были изучены отклонения молекулярного пучка паров воды в сильном электрическом поле [361] и вращательные переходы в димере воды (путем облучения молекулярного пучка в микроволновом диапазоне [362]). В результате удалось выяснить, что димеры воды имеют линейную структуру расстояние между атомами кислорода Яоо = 298 им, угол между связью 0Н---0 (этот угол близок к 180°) и биссектрисой угла Н—О—И молекулы акцептора равен 57°. Что касается энтальпии образования димеров (Н20)2, то различные экспериментальные методы дают довольно отличающиеся друг от друга результаты (табл. 8.1). [c.133]

    Углерод и уголь, два особые понятия. Органические вещества суть углеродистые соединения, оставляющие при действии жара уголь. Сажа. Чистый уголь. Свойства угля. Алмаз и графит. Изомерия с углем. Образование угля из растительных веществ. Состав дерева и травы и их изменения при сухой перегонке. Поглотительная способность угля. Образование перегноя. Торф. [c.54]

    Наиболее важным гидрофобным сорбентом является активи-ванный уголь, свойства которого изменяются в зависимости от способа активации, например при разной степени окисления поверхности частиц. Диаметр колонки, заполненной сорбентом, составляет несколько сантиметров при длине в несколько мет-ов. Размер частиц сорбента должен быть не менее 30 мкм, чтобы создавалась требуемая скорость прохождения жидкости. [c.281]

    Наиболее известными катализаторами являются серная и сернистая. кислоты, хлористый алюминий, хлористый цинк, фосфорная кислота, а также некоторые твердые вещества, обладающие адсорбционными свойствами, например, активированный уголь, флоридин и т. п. [c.92]

    Свойства диэфиров зависят от их химической структуры. С увеличением длины углеводородной цепи повышаются вязкость и температура застывания и уменьшается угол наклона вязкостно-температурной кривой. Циклические группы вызывают значительное повышение вязкости, но ухудшают вязкостно-температурные характеристики диэфиров. Введение в молекулу боковых цепей понижает температуру застывания (см. табл. 33) и ухудшает вязкостно-температурную характеристику диэфиров. Наибольшее распространение в качестве смазочных масел получают диэфиры изомерного строения. [c.144]

    Среди перечисленных параметров только одна величина является вектором. Отсюда следует, что направления векторов скорости фильтрации и градиента давления должны совпадать. Если бы вектор скорости фильтрации составлял конечный угол с вектором градиента давления, то при повороте малого элемента пористой среды вокруг направления вектора градиента давления он тоже должен был бы повернуться вместе с элементом. Но поскольку при таком повороте свойства течения не должны меняться, так как среда изотропна, вектор скорости фильтрации должен остаться неизменным. Это может быть только, если вектор скорости направлен вдоль вектора градиента давления. Таким образом, получаем  [c.30]

    К факторам, существенно влияющим на процесс сгорания в дизеле, относятся свойства топлива, угол опережения впрыска топлива, качество распыления топлива и продолжительность его подачи, степень сжатия, частота вращения коленчатого вала. [c.158]

    Некоторые пористые твердые тела, например активированный древесный уголь, силикагель или глинозем, обладают способностью поглощать на своей поверхности большие количества других веществ как из раствора, так и из газовой фазы. Это явление, открытое более 150 лет назад, называется адсорбцией. Твердые тела, обладающие таким свойством и называемые адсорбентами, имеют миллионы мельчайших пор, в результате чего их эффективная поверхность исключительно велика. Например, некоторые сорта древесного угля обладают удельной поверхностью более 1300 M je, а продажный силикагель может иметь удельную поверхность выше 800 м /г. [c.136]


    Если угол 0>9О° (рис. 115), жидкость практически не обладает смачивающими свойствами. [c.331]

    Уголь обладает способностью адсорбировать не только газы, но и растворенные вещества. Это его свойство открыл в конце ХУ ГИ века русский академик Т. Е. Ловиц. [c.436]

    Для луча данной длины волны угол вращения пропорционален алою жидкости, силе поля и некоторой постоянной (постоянная Берде), характерной для данного углеводорода. Свойство это аддитивное. [c.108]

    Причина столь резкого изменения картины рассеяния после аварии состояла в образовании в результате отжига монокристаллов никеля, которые служили своего рода дифракционными решетками. Если де Бройль прав и электрон обладает волновыми свойствами, то картина рассеяния должна напоминать рентгенограмму Лауэ. Д рассчитывать рентгенограммы к тому времени уже умели, формула Брэгга была известна. Так, для случая, представленного на рис. 5, угол а между плоскостями Брэгга и направлением, максимального рассеяния электронов составляет 65°. Измеренное рентгенографическим методом расстояние а между плоскостями в монокристалле Ni равно 0,091 нм. Уравнение Брэгга, описывающее положение максимумов при дифракции, имеет вид пХ = 2а sin а (п — целое число). Принимая п = 1 и подставляя экспериментальные значения а и а, получаем для Ъ Я = 2 0,091 sin 65° = 0,165 нм Формула де Бройля [c.22]

    В качестве адсорбента выбираем активный уголь марки АР-А по справочнику [9] или по табл. IX.2. В данном случае уголь АР-А выбран в соответствии со свойствами, пористой структурой и назначением (для рекуперации). Этот уголь обладает низкой удерживающей способностью, т. е. легко регенерируется. [c.152]

    К псевдоожиженному слою вряд ли применима концепция прилипания . Поэтому значения То, найденные по методу Куэтта, характеризуют, видимо, не внутренние, а в основном внепшие свойства псевдоожиженной системы (так же как угол трения, напряжение сдвига и т. п.), отражая трение системы и стенок, но не внутреннее трение. — Прим. ред. [c.234]

    Псевдоожиженную плотную фазу можно рассматривать как невязкую капельную жидкость, постулируя, что для каждой частицы, сила трения газового потока в любой момент времени уравновешивается силами тяжести и инерции (таким образом, из рассмотрения исключаются соприкосновение частиц и касательные напряжения ). Если по каким-либо причинам псевдоожижение нарушается, плотную фазу в аспекте ее текучести следует рассматривать как механическую систему отдельных твердых частиц. Свойства этой системы следует выражать в зависимости от таких характеристик текучести, как когезионный фактор, угол внутреннего трения и срезающие усилия. [c.567]

    Химические и физические свойства перерабатываемого материала, условия проведения процесса (температурный режим, значения и характер механических нагрузок) определяют выбор конструкционных материалов для изготовления всех элементов машины, контактирующих с суспензией, осадком и фугатом. Ряд параметров, характеризующих свойства суспензии, осадка и фугата, должен быть задай или найден экспериментально, так как эти параметры (например, плотность и вязкость суспензии и фугата, плотность осадка, его влажность, коэффициент трения ножа по осадку, угол естественного откоса осадка и т. д.) необходимы для расчета элементов коиструкции машины. [c.11]

    Прецессионные центрифуги изготовляют с вертикальным фильтрующим коническим ротором для концентрированных суспензий (30—60 % твердой фазы) при размере частиц твердой фазы 0,5— 12 мм. Ось ротора наклонена к вертикали под углом а 5° угол 5 наклона образующей ротора к оси зависит от свойств суспензии фактор разделения 200—800. [c.343]

    Графит имеет слоистую кристаллическую структуру, построенную так, что угол шестиугольника одного слоя находится под или над центром расположенного выше или ниже шестиугольника другого слоя (рис. 15). Между слоями силы связи слабее, чем внутри каждого слоя Под влиянием механического воздействия слои могут легко скользить относительно друг друга с весьма низким коэффициентом трения (0,04—0,05), чем и объясняются высокие антифрикционные свойства графита [243]- [c.67]

    После наплавки валика пластинки ра1зрезают на образцы для определения комплекса механических свойств статический загиб (угол [c.164]

    Исследование процесса образования пузырей и капель при истечении жидкостей или газов из отверстий и сопел имеет исключительно важное значение для разработки научно-обоснованных методов расчета колонных аппаратов, в которых межфазная поверхность создается путем диспергирования жидкости или газа. Механизм образования пузырей и капель чрезвычайно спожен и определяется очень большим числом параметров. Параметры, влияющие на процесс образования пузырей, можно подразделить на конструктивные, параметры, связанные со свойствами газов и жидкостей, и режимные параметры. К первому классу относятся диаметр, форма, ориентация и конструкция сопла, а также материал, из которого он изготовлен. Кроме того, чрезвьиайно важным конструктивным параметром для образования пузырей, является объем газовой камеры, из которой происходит йстечение газа в жидкость. К параметрам, связанным со свойствами выбранной системы, можно отнести поверхностное натяжение на границе раздела фаз, плотность и вязкость жидкости и газа, угол смачивания и скорость звука в газе. И, наконец, режимные параметры включают объемный расход диспергируемой фазы, величину и направление скорости сплошной фазы, высоту уровня жидкости в колонне, перепад давления в сопле и температуру. Не все названные параметры равноценны и одинаково важны для процессов образования капель и пузырей, однако большинство оказывает существенное влияние на величину отрывного диаметра и частоту образования диспергируемых частиц. [c.48]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Угли существенно различаются по своим свойствам в зпвиси-мости от вещества, из которого оии получены, п способа получения. Кроме того, они всегда содержат примеси, сильно влияющие на нх свойства. Важнейшие технические сорта угля кокс, древесный уголь, костяной уголь и сажа. [c.436]

    Первая одноцилиндровая установка с переменной степеньк сжатия была создана Г. Рикардо в начале 20-х годов, и на этой установке была разработана первая методика оценки детонационной стойкости топлив по так называемой критической или наивысшей полезной степени сжатия, при которой начинается слышимая детонация [1 ]. Таким образом, уже в первом методе оценки детонационной стойкости бензинов детонация вызывалась за счет увеличения степени сжатия. В дальнейшем для инициирования детонации применялись фактически все параметры режима работы двигателя (дросселирование, наддув, число оборотов, состав смеси, угол опережения зажигания, температурный режим и т. д.), однако до сего времени изменение степени сжатия является основным фактором для создания условий детонационного сгорания в лабораторных методах оценки антидетонационных свойств бензинов. [c.91]

    И. Вы знаете, что молекулой называется наименьшая частица веш,ества, сохраняюш,ая свойства всего вещества в целом. Какие из нижеприведенных свойств веществ можно использовать для подтверждения формулировки плотность, цвет, энергия связи, дипольный момент, масса, твердость, угол между связями, энтальпия образования из атомов, энтропия, растворимость, вкус, цвет, межъядерные расстояния, скорость движения, размер, кинетическая энергия, температура, давление, магнитный момент. Если вы считаете, что предложенное выше определение молекулы неточно или неправильно, дайте свое собственное определение. [c.16]

    Исходными данными для расчета конечной температуры нагрева кокса являются размеры печи (внутренний диаметр, высота, угол наклона подины, размеры колодца, вынолняюш,его роль реакциопной камеры), производительность, число оборотов пода в минуту, число скребков, нх размеры и расположение в печи, температура топочного пространства, влажность н теплофизические свойства кокса. [c.207]

    Таким образом, в результате вычислений определяется некоторая ломаная линия, линейные отрезки которой имеют угол наклона, вычисляемый через производную в соответствующей точке интегральной кривой. Как следует из рис. 53, с ростом к ломаная линия все дальше отходит от истинного решения. Отсюда же из геометрических представлений легко заметить основной недостаток метода Эйлера если, например, кривая решения выпуклая, то ломаная кривая, вычисляемая на каждом шаге, будет отходить от нее вверх, поскольку для вычисления положения последующей точкп используется производная в предыдущей. Очевидно, чем больше кривизна интегральной кривой и шаг интегрирования, тем значительнее это отклонение. Другим неприятным свойством этого метода является также то, что ошибка интегрирования накапливается, т. е. увеличивается с каждым шагом. [c.353]

    На рис. 41 представлено образование двух эквивалентных локализованных молекулярных орбиталей как перекрывание функций рд и 5д, функций уОв и 5в соответственно. На рис. 41, б связывающие ЛМО заштрихованы, МО неподеленных пар не заштрихованы. Благодаря ортогональности -орбиталей эквивалентные ЛМО и грг также ортогональны и образуют между собой прямой угол, и молекула НЮ нелинейна. Поскольку эквивалентные ЛМО г 51 и практически не перекрываются, т. е. не взаимодействуют, энергия связи молекулы НгО может быть приближенно представлена как аддитивная величина, т. е. как сумма равных энергий двух связей О—Н . Таким образом при помощи локализованных молекулярных орбиталей приближенно описаны наблюдаемые свойства геометрическая конфигурация (т. е. направленность валентности ) и аддитивность [c.98]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]


Смотреть страницы где упоминается термин Уголь свойства: [c.9]    [c.437]    [c.114]    [c.355]    [c.234]    [c.335]    [c.343]    [c.583]    [c.69]    [c.465]    [c.421]    [c.81]    [c.234]    [c.238]    [c.335]    [c.47]   
Справочник азотчика Том 1 (1967) -- [ c.171 , c.178 , c.181 ]

Фильтрование (1971) -- [ c.18 , c.289 ]

Справочник азотчика Т 1 (1967) -- [ c.171 , c.178 , c.181 ]




ПОИСК







© 2024 chem21.info Реклама на сайте