Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорпроизводные парафина

    Парафин реагирует с хлором с образованием хлорпроизводных парафинов, являющихся сырьем для производства присадок к маслам. [c.473]

    Особый интерес представляет парафин в качестве исходного сырья для химической переработки с получением хлорпроизводных жирных кислот, смазочных масел, присадок для снижения температуры застывания масел (депрессоров) и т. д. [c.45]


    По данным авторов , эффективность хлорированных углеводородов выше, чем парафинов, несмотря на то, что температура при использовании хлорпроизводных была значительно ниже. К сожалению, выход продукта не указан. [c.167]

    Гидродинамика реактора определяется наличием двух фаз жидкой, в которой происходит синтез хлорпроизводных, и газовой, которую образуют избыточный хлор и хлористый водород. Объем газовой фазы в процессе синтеза не меняется, поскольку в результате реакции происходит эквимолярный обмен между фазами. Увеличение концентрации хлористого водорода не влияет на скорость диффузии хлора в жидкую фазу вследствие практической нерастворимости хлористого водорода в парафине. [c.390]

    Установлено [56], что растворимость парафина в таких полярных растворителях, как кетоны, спирты и жирные кислоты, возрастает с увеличением числа атомов углерода в молекуле растворителя, а растворимость в хлорпроизводных зависит от числа атомов хлора при одном и том же углеродном атоме и от числа атомов углерода в радикале при одном и том же числе атомов хлора. По растворяющей способности по отнощению к парафинам алифатические растворители с полярными группами могут быть расположены в следующем порядке  [c.75]

    Большая часть работ С. С. Наметкина посвящена химии и технологии нефти. Он разработал ряд проблем химии нефти (каталитическая ароматизация нефтяных фракций, синтез хлорпроизводных и спиртов на основе нефтяных углеводородов, окисление парафинов в спирты и альдегиды, получение моющих средств и др.), составил руководство по химии нефти. [c.560]

    Растворимость парафинов в хлорпроизводных жирного ряда зависит от числа атомов хлора при том же углеводородном радикале и от числа атомов углерода в радикале при том же числе атомов хлора в молекуле. [c.99]

    Реакторы данного типа, работающие в режиме смешения или вытеснения, широко применяются в таких многотоннажных процессах, как окислительный и высокотемпературный пиролиз метана с полз чением ацетилена, крекинг и пиролиз углеводородного сырья, деалкилирование ароматических углеводородов, окисление и нитрование низших парафинов, хлорирование метана, а также в процессах хлорирования в сочетании с расщеплением хлорпроизводных и др. [c.42]

    Хлорпроизводные метана широко известны как растворители жиров, воска, парафина, смол, каучука. Все они огнеустойчивы и применяются во многих отраслях промышленности. [c.499]


    Другое хлорпроизводное этилена—дихлорэтан широко применяется как растворитель для экстрагирования жиров, для очистки нефтепродуктов от парафина и др. Большое количество-дихлорэтана подвергается дегидрохлорированию с целью получения хлористого винила. [c.129]

    Для получения различных хлорпроизводных хлорированию подвергаются очень многие парафиновые углеводороды и прежде всего метан, этан, пентан и высшие парафины [3]. [c.364]

    ПРИМЕНЕНИЕ ХЛОРПРОИЗВОДНЫХ ВЫСШИХ ПАРАФИНОВ [c.802]

    На промышленных установках депарафинизации применялись и другие органические растворители, в частности хлорпроизводные. Их использование до известной степени упрощало последующее центрифугирование. При использовании этих растворителей, обладающих высокой плотностью, парафин выводят по оси центрифуги, а не по ее периферии, как это делается, когда растворителем служит лигроин. [c.116]

    Сергей Семенович Наметкин (1876—1950) родился в Казани. В 1902 г. окончил Московский университет и остался там работать. В 1912 г. защитил магистерскую, а в 1917 г.—докторскую диссертацию. С 1912 г. профессор кафедры органической химии Московских высших женских курсов, реорганизованных в 1918 г. во 2-й Московский государственный университет, а в 1930 г.—в Московский институт тонкой химической технологии. С 1938 г. профессор Московского университета. Одновременно в 1926—1934 гг. работал в Государственном исследовательском нефтяном институте, а в 1934—1948 гг.—в Институте горючих ископаемых АН СССР, являясь с 1939 г. его директором. С 1948 г. директор Института нефти АН СССР. В 1932 г. был избран членом-корреспондентом, а в 1939 г. действительным членом АН СССР. С. С. Наметкин долгие годы занимался исследованиями в области терпенов. Большая часть его трудов посвящена химии и технологии нефти (каталитическая ароматизация нефтяных фракций, синтез хлорпроизводных и спиртов на основе углеводородов нефти, окисление парафинов в спирты и альдегиды, получение моющих средств и др.). Работал также в области синтеза душистых веществ, металлоорганических соединений и стимуляторов роста растений. [c.190]

    Редпспергированне платины проводят после выжига кокса, отложившегося на катализаторе. Применяемый метод редиспергирова-иия, который обычно называют оксихлорированием , заключается в обработке катализатора при 500—520 °С газовой смесью, включающей хлор или его соединения (хлороводород, хлорпроизводные парафинов), кислород н водяной пар. Концентрации кислорода и паров воды значительно превышают концентрации хлора или его соединений. При взаимодействии с кислородом и парами воды хлорпроизводные парафинов реагируют в присутствии алюмоплатинового катализатора с образованием Oj и НС1 [1791. Хлороводород может подвергаться окислению по реакции [c.90]

    В качестве алкилирующих агентов при получений высших ал килбензолов предлагали использовать первичные и вторичны олефины, например бутен-1, бутен-2 9], додецен [10, 11]. а также хлорпроизводные парафинов [12, 13]. Наиболее распространенными катализаторами в данйых процессах являются плавиковая кислота [9, 14], галогениды алюминия [1, 10, 13] или полученн] й иа их основе комплексный катализатор Густавсона. Как показали наши исследования, при алкилировании этиленом или пропиленом скорость процесса лимитируется диффузней даже в аппарате с мешалкой, а тем более в аппарате колоннохо типа практически не зависит от температуры (Е,цт =20 кДж/моль) и массовой доли катализатора в диапазоне 7.,.30%. Селективность процесса пс бутилену также несколько падает с ростом температуры и отношения бутилен бензол. Однако от ранее рассмотренных случае1 данный процесс отличается двумя весьма существенными особенностями, о которых не упоминается в известной монографии [5]. Первая особенность связана с тем, что на сильнокислотных Льюисовских центрах, которыми обладают катализаторы типа ККГ вторбутилбензол (ВББ) и другие вторичные алкилбензолы подвергаются изомеризации по схеме  [c.62]

    Наибольшее значение имеет синтез хлорпроизводных парафинов в меньшей степени применяют хлорирование ароматических соединений, а также процессы фторирования, бромирова-ния и иодирования. [c.236]

    Одной из особенностей процесса депарафинизации в растворах дихлорэтан-бензоловой смеси является возможность перерабатывать малоочищенное и даже совсем неочищенное сырье дистиллятного и остаточного происхождения. Эта особенность обусловливается, с одной стороны, использованием в качестве растворителя хлорпроизводных, относительно хорошо растворяюпщх асфальто-смолистые вещества, и, с другой стороны, применением центрифугирования, которому не препятствует выделение из раствора вместе с парафином некоторого количества смолистых веществ. При депарафинизации же фильтрацией выделение из раствора такого же количества асфальто-смолистых веществ сделало бы раствор совершенно не фильтрующимся. При дихлорэтан-бензоловой депарафинизации присутствие асфальто-смолистых веществ в ряде случаев даже улучшает центрифугирование в той мере, в какой оно способствует образованию плотных дендритных кристаллов выделяющегося парафина. Поэтому на некоторых зарубежных заводах процесс дихлорэтан-бензоловой депарафинизации предшествует очистке. Такую же схему предполагалось осуществить но первоначальному проекту и на грозненском заводе. Указанная выше последовательность процессов дихлорэтан-бензоловой депарафинизации и очистки при переработке тяжелого цилиндрового дистиллята вязкостью 30—45 сст нри 100° описана И, И. Нюренбергом [299] в работе по обобщению опыта применения дихлорэтан-бензоловой депарафинизации на некоторых зарубежных заводах, а также и в других источниках [24] для остаточного сырья. При выборе последовательности депарафинизации и очистки нужно иметь, в частности, в виду, что очистка в большинстве случаев повышает температуру застывания очищаемого продукта вследствие увеличения концентрации в нем парафина. Поэтому температуру депарафинизации, если этот процесс проводят перед очисткой, устанавливают более низкую, чем при обычной последовательности данных процессов. [c.205]


    При термическом хлорировании метана реакция ведется при умеренно высоких температурах порядка 250—300° С [290], но вообще по мере возрастания молекулярного веса парафина температура реакции понижается. При хлорировании всегда получается смесь хлорпроизводных, и для того чтобы направить реакцию в нужную сторону, было испробовано множество способов (выбор катализаторов, разбавление инертными газами, присутствие других хлорирующих реагентов, как пентахлорстибин, хлористый сульфурил и фосген) [291, 292]. [c.583]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    Достоинство метода — возможность фракционирования парафннов с любой кристаллической структурой. В качестве растворителей можно применять кетоны, хлорпроизводные, толуол, втор-бутилацетат и другие растворители, которые используются в обычных процессах депарафинизации, обезмасливания и фракционирования. Метод зонного осаждения может быть использован при изучении состава парафина и различных его композиций с церезином, полимерными продуктами и, др. [c.176]

    Для технических целей имеют значение не только индивидуальные хлорпроизводные, но и смеси продуктов хлорирования. Так, галовакс, используемый как заменитель воска, смол для пропитки тканей, изготовления конденсаторов, представляет собой смесь три- и тетрахлорнафталинов. Совол — смесь тетра- и пен-тахлордифенилов — негорючий пластификатор, смазочная жидкость, фунгицид, теплоноситель. Широкое применение имеют смеси, получаемые хлорированием парафина, их торговые названия хлора-фин, хлоровакс, карбовакс и др. [c.148]

    В качестве среды, в которой проводится вымораживание парафина, обыкновенно используются парные растворители спиртоэфирная смесь, смесь амилового спирта с этиловым, ацетон — толуол, дихлорэтан — бензол, ацетон — бензол, метилэтилкетон — бензол и другие. В каждой такой смеси один из компонентов является осади-телем твердых парафинов. К ним относятся хлорпроизводные, кетоны и др. В этих растворителях с понижением температуры растворимость парафинов резко падает. Другой же компонент (обычно ароматические углеводороды) является собственно растворителем для всей навески и для тех углеводородных примесей, которые могут частично осадиться вместе с парафином. На точность анализа оказывают также влияние величина навески, кратность разбавления навески растворителями и условия охлаждения. [c.131]

    Применение. Н.у. применяют гл. обр. в составе моторных и реактивных топлив, как сырье для хим. и нефтехим. пром-сти жидкие Н.у. и хлорпроизводные метана и этана используют в качестве р-рителей, твердые (парафин, церезин)-в произ-ве пластмасс, каучуков, синтетич. волокон, моющих средств, а также в пищ. пром-сти, электро- и радиотехнике. [c.178]

    Органические хлорпроизводные. Некоторые хлорсодержащие соединения представляют собой вязкие, маслянистые жидкости, используемые в отдельных случаях в качестве смазочных веществ в чистом виде или в смеси с нефтяными маслами. Типичными материалами этого вида являются хлордифенилы, хлорнафталин, хлордифенилоксиды и хлорированный парафин. В табл. 66 содержатся данные о физических свойствах серии хлорированных дифенилов (известных под торговым названием Арохлор ), которые можно рассматривать как. типичные для класса хлорорга-нических масел. Наиболее примечательной характеристикой этих масел является исключительно низкий индекс вязкости, составляющий от —250 до —2300. Хотя данные о вязкостно-температурных свойствах хлорпроизводных очень ограничены, известно, что они не укладываются в прямую линию на номограмме ASTM. Исключительная чувствительность вязкости к изменению [c.241]

    Улавливание растворителей приносит не только большой технико-экономический эффект, но и имеет огромное социальное значение, оздоровляя условия жизни человека и обеспечивая охрану окружающей среды. Несмотря на меры, предпринимаемые в Советском Союзе, потери растворителей и их выбросы в атмосферу в настоящее время оцениваются в 600— 800 тыс. т в год. Наиболее остро стоит проблема улавливания ацетона, бензина, бензола, толуола, ксилола, метилэтилкетона, простейших спиртов, нормальных парафинов Се и С , сероуглерода, дхгэтилового и изопропилового эфиров, уайт-спирита, хлорпроизводных углеводородов (хлороформа, дихлорэтана, хлорбензола, метиленхлорида). [c.268]

    Углеводородные газы, н особенно газы деструктивной церв-работки нефти, еще недавно, лет 15—20 назад, в лучшем случае использовались как топливо, а часто выпускались па воздух и сгорали в виде факелов. Сейчас эти газы являются сырьем для очень многих процессов органического синтеза и для производства огромного количества разнообразных продуктов. Высокооктановые ком-цоненты моторного топлива, растворители, в том числе спирты, нитропроизводные, хлорпроизводные, различные сорта синтетического каучука, синтетические моторные топлива, масла, парафин и церезин, по качеству намного превосходящие естественные продукты, получаемые из нефти синтетические смолы и пластмассы и многие другие продукты можно готовить и готовят из углеводородных газов. [c.333]

    Важное практическое значение имеют хлорпроизводные метана и парафина. Метилхлорид и метиленхлорид получают хлорированием метана при 00—550°С, а хлороформ и тетрахлорид углерода — фотохимическим хлорированием метиленхлорида в жидкой фазе. Этилхлорид получают хлорированием этана в газовой фазе при 450—500 °С. При газофазном хлорировании технической смеси н- и изопентана образуется смесь семи изомеров монохлор пентана общей формулы 5H11 I, используемая для производства смеси изомеров амиловых спиртов (пентазол). Продукт частичного замещения водорода хлором во фракции алканов Сю—Сц используют в производстве поверхностно-ак-тивных веществ типа алкиларилсульфонатов  [c.185]

    Соли цинка, кадмия и ртути широко используются для ускорения ионных процессов. Активность хлористого цинка в реакциях изомеризации парафинов или олефинов в изосоединения [343—346], перемещения кратных связей в олефинах [356, 357] и перемещения алкильных заместителей в ароматических соединениях [347, 348] в общем ниже, чем активность хлористого алюминия. Высокую активность проявляет Zn U при изомеризации хлорпроизводных олефинов С4, С5 (большую, чем Hg Ia [358—361]) наиболее характерна для Zn 2 изоме-)изация замещенных фенилкетонов (перемещение фенильных и алкильных заместителей 350—355]) N-производных анилина (разрыв С—N-связи [363—365]) различных фенильных эфиров [366—368] и замещенных органических окисей [194, 369, 370] (разрыв С=0-связи). [c.1347]

    Кристаллизация протекает тем лучше, чем ниже вязкость среды. JMaлaя вязкость благоприятствует также процессу отделения кристаллов от масла. По этой причине процесс депарафинизации ведут в растворе. В качестве растворителей применяют углеводородные растворители бензин (нафта), ожиженный пропан и селективные растворители (кетоны, хлорпроизводные). Селективные растворители имеют ряд преимуществ по сравнению с углеводородными. Одним из главных их преимуществ является малая растворяющая способность по отношению к парафинам и церезинам, что дает возможность проводить кристаллизацию при более высокой температуре и при этом получать масла с низкой температурой застывания. [c.54]

    Непосредственному определению коэффициентов активности и термодинамических функций растворения посвящено большое число работ, причем в качестве растворителей использованы нормальные парафины, включая летучие при рабочих температурах [6, 15], сквалан [15, 21], ароматические углеводороды типа бен-зилдифенила [15, 61], фенантрена [61] и т. д., эфиры фталевой кислоты [34], азотистые соединения типа производных хинолина [61], нитрилы [60, 68], хлорпроизводные (1,2,3-трихлорбен-зол, ди-н-бутилтетрахлорфталат) [6, 15], полиэтиленгликоли [72] и другие соединения [73—70]. Это позволило с помощью сорбатов различного строения охватить все многообразие межмолекулярных взаимодействий, включая дисперсионное, диполь-динольное и специфические, и выявить ряд закономерностей, связывающих значения термодинамических характеристик со структурой молекул. Краткая сводка данных по сорбатам и растворителям, использованным для определения коэффициентов активности, дана в табл. 8. В Приложении приводятся результаты, полученные одним из авторов и Помазановым нри исследовании различных хроматографических систем, включающих полярные и неполярные растворители и сорбаты. [c.43]

    Неразветвленные длинноцепочечные боковые алкильные группы в этих алкилбензолсульфонатах получаются из жидких н-парафинов Сю— ig или из твердого парафина (фракции i5—С35). Исходные жидкие парафины выделяют из керосиновых дистиллятов нефти путем селективной адсорбции на молекулярных ситах или карбамидной депарафинизации. Оба эти метода дают парафины с прямой цепью, имеющие степень чистоты свыше 90%. Полученные н-парафины переводят в моно-хлорпроизводные или в олефины с неконцевой двойной связьк , [c.522]


Смотреть страницы где упоминается термин Хлорпроизводные парафина: [c.81]    [c.108]    [c.873]    [c.1019]    [c.352]    [c.352]    [c.144]    [c.96]    [c.96]    [c.21]    [c.21]    [c.104]    [c.182]    [c.739]   
Смотреть главы в:

Нефтехимическая технология -> Хлорпроизводные парафина




ПОИСК





Смотрите так же термины и статьи:

Парафин хлорпроизводные его, окисление



© 2024 chem21.info Реклама на сайте