Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярность молекулярных соединений кислот с основаниями

    На Первой конференции по химии и применению фосфорорганических соединений мы сообщили о разработанном в лаборатории фосфорорганических соединений ИНЭОС потенциометрическом методе определения положения таутомерного равновесия [1]. Представляло интерес распространение этого метода на апротонные среды. В отличие от проводящих протолитических сред, в которых прототропное таутомерное равновесие складывается, как равновесие таутомерных форм, как равновесие кислот или оснований с соответствующими ионами, в апротонных средах с низкой диэлектрической постоянной в равновесии с молекулярными таутомерными формами находятся ионные пары. В случае таутомерии веществ кислотного характера ионная пара образуется общим обеим таутомерным формам анионом и катионом основания — переносчика протона. Диссоциация ионных пар на свободные ионы в мало полярных средах весьма незначительна и не оказывает влияния на положение таутомерного равновесия. Общую схему таутомерного равновесия в апротонных средах с низкой диэлектрической постоянной можно, по всем данным, выразить следующим образом  [c.65]


    Б. Полярность молекулярных соединений кислот с основаниями [c.271]

    Из этих данных следует, что с повышением силы кислот и оснований увеличивается полярность образованного соединения. Так, полярность связей молекулярных соединений,кислот с пиридином возрастет от ц=2,93 для уксусной кислоты до 1 = 4,07 для монохлоруксусной и до я=10,1 для трихлоруксусной, [c.471]

    Как предположили, независимо друг от друга, Горди [4], Дэвис [5], Н. Д. Соколов [6] и Кольтгофф [7], первичной реакцией между кислотой и основанием следует считать образование с помощью водородных связей молекулярных соединений различного состава и полярности. Криоскопические [1, 8—10], спектральные [4, 11, 12] и диэлектрические [13] измерения подтвердили это предположение. Повышение силы кислоты и основания приводит к увеличению полярности возникающих между ними водородных связей, обусловливая возможность завершения кислотно-основного взаимодействия переходом протона [c.63]

    Таким образом, органическая химия как отдельная ветвь химии обязана своим существованием происхождению, свойствам и многообразию соединений углерода. Правомерен вопрос имеет ли смысл это произвольное деление в настоящее время Многие так называемые органики занимаются сегодня исследованием физических свойств и термодинамических параметров веществ, спектральными измерениями, изучением кинетики и механизмов реакций или свойств углеродсодержащих солей, кислот и оснований в водных растворах или в других полярных растворителях. В то же время огромное количество синтезированных в последнее время неорганических веществ — вещества молекулярного типа, образованные ковалентными связями, синтез и очистка которых, а также понимание их строения требуют методов и подходов, типичных для органической химии. По-видимому, в будущем более обоснованной была бы специализация по типу осуществляемой работы — физические измерения, кинетика реакций, анализ или синтез, — а не по химическим элементам, из которых построены вещества, с которыми приходится работать. [c.128]

    Так же как и в теории кислот и оснований, представления об окислении и восстановлении веществ постепенно развивались, с тем чтобы выработать единый подход к широкому кругу родственных явлений. Первоначально под окислением понимали реакцию присоединения кислорода. Вообще говоря, при такой реакции неметаллических элементов образуются типичные ангидриды кислот (СОз, ЗОз, Р4О10), относящиеся к классу полярных молекулярных соединений. Вследствие того что кислород энергично притягивает электроны, электронная плотность связывающей пары электронов увеличивается вблизи атома кислорода. [c.407]


    С усилением кислоты повышается полярность ее молекулярного соединения с основанием. Например, дополнительная полярность водородной связи в молекулярных соединениях кислот с пиридином такова для пропионовой кислоты (1, 4 /))< <хлоруксусноп (2,0 О) < трихлоруксусной (5,1 О). [c.272]

    Ионогенные группы большинства СХАП содержат атомы азота и кислорода, злектроотрицательность которых соответственно равна 3,07 и 3,5 [40]. Это приводит во многих случаях к молекулярной сорбции полярных водородсодержащих соединений (кислот, аминокислот и др.) в результате образования водородной связи. Сорбция азотсодержащих оснований, аминокислот может проходить и на неиоиизнрованных катионитах также вследствие образования водородной связи между атомом водорода ионогенной группы полимера и сильно электро- [c.67]

    Предполагается, что первой ступенью протолитич. реакции является образование молекулярного соединения кислоты с основанием за счет водородной связи (И. Кольтгоф, К. Ингольд, Н. А. Измайлов, Н. Д. Соколов). В зависимости от свойств растворителя, кислотности и основности реагентов, реакция может остановиться на этой стадии, либо привести к образованию ионных пар, либо завершиться их диссоциацией на ионы. Протолитич. реакция (присоединение или отщепление протона), как стадия каталитич. процесса, приводит к перераспределению электронов в молекуле субстрата и тем самым к образованию промежуточных соединений с повышенной реакционной способностью (карбониевые ионы, карбанионы, полярные комплексы). Эта специфич. стадия реакции обусловливает снижение энергии активации и ускорение процесса в целом. Дальнейшее превращение активных промежуточных соединений ведет к серии реакций с образованием конечных продуктов. [c.240]

    Работы Шатенштейна и автора привели к утверждению, что схема Бренстеда — Лаури не полностью отражает механизм кислотно-основного взаимодействия. Очень важную роль играет образование соединений между кислотами и основаниями за счет водородных связей различной прочности и полярности. Углеводороды, так же как и кислоты, участвуя в кислотноосновном взаимодействии, образуют прежде всЙго молекулярные соединения за счет водородной связи и только в определенных условиях могут превращаться в ионы в карбанионы и ионы карбония. Однако карбокислоты и карбо-основания относятся к категории наиболее слабых протолитов, они превращаются в ионы значительно труднее, чем те вещества, которые сейчас обычно называют кислотами и основаниями. [c.291]

    Все соли состоят из какой-либо кислоты и какой-либо щелочи... Из этих двух универсальных принципов составлены все тела мира, — писал немецкий химик и аптекарь Отто Тахений в 1680 г. В реакциях кислот и кислотных оксидов с основаниями и основными оксидами, при многих других обменных взаимодействиях образуются соединения, называемые солями. Соли — это кристаллические вещества, построенные из ионов. В воде и других полярных растворителях соли распадаются (диссоциируют). Если же кристаллическое вещество состоит из молекул, связанных межмолекулярными химическими связями, то оно к числу солей не относится, это молекулярное соединение такого типа, как дихлорид ртути Hg lg. Молекулярные соединения, в отличие от солей, в воде ведут себя как слабые электролиты и почти не распадаются на ионы. [c.89]

    Полярность продуктов присоединения кислот к основаниям доказана прямыми измерениями диэлектрических свойств их растворов. Такие измерения в тройных системах, состоящих из кислоты, основания и растворителя (в частности, бензола), выполнены несколькими авторами [14, 51, 52]. Я. К. Сыркин и Л. Собчик [53, 54] измерили диэлектрическую поляризацию Р более тридцати систем, состоящих из растворов стехиометрических количеств кислоты и основания в бензоле, и сравнивали с суммарной поляризацией двух компонентов. Разность А1ежду наблюденной и вычисленной величиной, равная ДР, характеризует силу взаимодействия между реагентами. Определены также дипольные моменты молекулярных соединений, образующихся в растворе. Разность между дипольным моментом молекулярного соединения и векторной суммой моментов связей веществ, его образующих, дает представление о полярности водородной связи. [c.272]

    По данным анализа и результатам определения молекулярного веса тиоктовой кислоты установлена ее брутто-формула СаНмОгЗг. В ИК-спектре соединения имеется полоса при 5,8 мк, характерная для алифатической карбоксильной группы. Значение рКк, равное 4,76 (для н-масляной кислоты рКк = 4,82), указывает на то, что полярные или ненасыщенные группы не находятся в а- или р-положении по отношению к карбоксильной группе. Тиоктовая кислота не дает положительной реакции с нитропруссидом натрия, характерной для соединений, содержащих меркаптогруппу (—8Н) при полярографическом исследовании было установлено, что сера в веществе способна восстанавливаться на капельном ртутном электроде и, следовательно, присутствует в виде дисульфидной группировки. Десульфированием над никелем Ренея тиоктовая кислота была превращена в н-каприловую кислоту СНз(СН2)бСООН. Поскольку тиоктовая кислота не содержит метильных групп (определение по Куну—Роту отсутствие характерной линии в ИК-спектре при 3,37 мк), один атом серы должен быть связан с концевым атомом углерода. На основании этих данных для тиоктовой кислоты были предложены три возможные структуры  [c.630]


    Амфотерный характер иона карбония в концепции ЖМКО предполагает способность на стадии роста к взаимодействию по типу мягкая кислота - мягкое основание и жесткая кислота - жесткое основание. Предельные случаи - реакции свободных катионов в газовой форме, где сольватация может осуществляться только субстратом и рост цепи по эфирной связи, например М-ОСЮ3. Для относительно устойчивого иона карбония из изобутилена эффективный рост цепи обеспечивается предпочтительностью реакции с мягким основанием - мономером по сравнению с более жесткими основаниями (противоион и другие). Важно, что условия конкуренции меняются по ходу полимеризации вследствие расхода мономера, изменения состояния катализатора и других процессов. Неблагоприятная вначале реакция карбкатиона, например с противоионом или его фрагментом, может стать выгодной к концу процесса. Видимо, по этой причине происходит дезактивация АЦ, вследствие чего полимеризация изобутилена во многих случаях не доходит до полного исчерпания мономера. Поэтому правильнее не конкретизировать состояние ионной пары, а говорить о неопределенности этого понятия, подразумевая неоднозначную роль противоиона во время роста полимерной цепи. Следовательно, термины свободный ион карбония и, соответственно свободный противоион , применяемые в отношении роста цепи при вещественном инициировании катионной полимеризации, весьма условны. Известная низкая способность к сольватации объемных противоионов в катионной полимеризации объясняет непринципиальное влияние полярности растворителя на стадии роста цепи. Аналогично комплексование противоиона с электроноакцепторными соединениями или введение солевых добавок с одноименным (катализатору) анионом, судя по сравнительно небольшому увеличению значений молекулярной массы полиизобутилена [217], мало изменяет поведение ионной пары. Полезную информацию о роли противоионов на стадии роста дают квантово-химические расчеты взаимодействия карбкатиона с мономером [218]. Учитывая конкурентный характер реакции мономера и противоиона с АЦ, переходное состояние стадии роста можно представить по типу реакций нуклеофильного замещения 8 ,2  [c.87]

    Известны три общих метода введения галогена в ароматическое соединение с помощью электрофильного реагента. Такими реагентами, в порядке увеличивающейся реакционной способности, являются 1) молекулярный галоген 2) молекулярный галоген в присутствии катализатора, такого как галогениды иода, олова(IV), железа (III), сурьмы(V) и алюминия 3) положительно заряженный галоген, обычно связанный с носителем, например ионом хлорноватистой кислоты. Выбор одног из этих методов зависит от нуклеофильности ароматического субстрата. Так, хотя хлор или бром реагируют с бензолом в полярных или кислых растворителях, однако реакция проходит очень медленно для завершения реакции между хлором и бензолом требуется несколько дней. С другой стороны, реакция брома с анилином протекает настолько быстро, что ее можно проводить в разбавленных водных растворах при комнатной температуре. Но даже в этих условиях невозможно прекратить реакцию раньше, чем образуется 2,4,6-триброманилин. Это обусловлено, в основном, тем, что каждый из промежуточно образующихся броманилинов является более слабым основанием, чем предыдущий, и поэтому менее способен к протонированию. Для удобства дальнейшее изложение разделено на три части, в которых будут обсуждены реакции фторирования, хлорирования и бромирования, иодирования. [c.375]

    В 1863 г. Липскоумб [1] впервые предложил применять активный уголь для очистки питьевой воды. Первое значительное исследование активного угля касалось влияния молекулярной структуры и pH раствора на эффективность адсорбция. В 1929 г. Фелпс и Петерс (Англия) [2] изучили зависимость адсорбции низших жирных кислот и простых алифатических аминов от pH раствора и степени диссоциации кислот и оснований. Оказалось, что адсорбируются только недиссоциированные молекулы и что адсорбция органических веществ в водных растворах аналогична адсорбции газов. В начале 40-х годов Челдин и Уиль-ямс сделали два важных наблюдения 1) адсорбция изученных ими 33 аминокислот, витаминов и родственных соединений активным углем (Dar o 6-60) соответствует изотермам адсорбции Фрейндлиха 2) наличие и положение полярных групп и от сутствие ароматических ядер определяет возможность адсорбции органических веществ активным углем из воды. Задача этих исследователей состояла в выявлении возможности использования угля в аналитических целях. Однако вследствие высокой концентрации изучаемых органических веществ сделанные выводы нуждаются в уточнении применительно к их адсорбции из реальных водоемов или промышленных сточных вод. [c.95]

    При обычной физической адсорбции полимеров можно интуитивно предположить, что в данном гомологическом ряду преимущественно адсорбируются образцы с более высокой молекулярной массой. Специфическая адсорбция может нарушить влияние молекулярной массы. Типичным примером является преимущественная адсорбция низкомолекулярных полимеров с более высокой полярностью, таких, как фталевые полуэфиры, входящие в состав жирных алкидов. Уолбридж и др. [111] показали, что адсорбция этих продуктов может быть объяснена с точки зрения кислотно-основного взаимодействия, в котором основаниями являются поверхность TiOg и металл сиккатива. Они установили, что общее поведение системы при флокуляции — дефлокуляции зависит от порядка введения сиккатива и димерной жирной кислоты в обычную белую эмаль на основе жирного алкида, а также от относительной силы кислоты и возможности образования необратимых связей карбоксильных групп с поверхностью пигмента, что, в свою очередь, зависит от температуры дисперсии. Поверхность различных пигментов может связывать кислоты (или основания) подобно ионообменным смолам. Соломон и др. [112] исследовали кислотные центры на поверхности минеральных наполнителей и пришли к выводу, что они сравнимы по силе с кислотными центрами катализаторов крекинга . Наличие подобных центров, которые проявляются при действии тепла, оказывает очень сильное влияние на химические реакции в поли- мерных соединениях, особенно в неполярных средах. [c.163]


Смотреть страницы где упоминается термин Полярность молекулярных соединений кислот с основаниями: [c.295]    [c.179]    [c.171]    [c.9]    [c.505]    [c.96]    [c.286]    [c.42]    [c.617]    [c.155]    [c.526]   
Смотреть главы в:

Изотопный обмен и замещение водорода в органических соединениях -> Полярность молекулярных соединений кислот с основаниями




ПОИСК





Смотрите так же термины и статьи:

Основания и кислоты



© 2025 chem21.info Реклама на сайте